



#### **www.Jameco.com** ✦ **1-800-831-4242**

The content and copyrights of the attached material are the property of its owner.

#### Jameco Part Number 1754699



# LTC1864/LTC1865

## µPower, 16-Bit, 250ksps 1- and 2-Channel ADCs in MSOP

### **FEATURES**

- <sup>n</sup> **16-Bit 250ksps ADCs in MSOP Package**
- Single 5V Supply
- Low Supply Current: 850µA (Typ)
- Auto Shutdown Reduces Supply Current to 2μA at 1ksps
- $\blacksquare$  True Differential Inputs
- 1-Channel (LTC1864) or 2-Channel (LTC1865) Versions
- SPI/MICROWIRE™ Compatible Serial I/O
- 16-Bit Upgrade to 12-Bit LTC1286/LTC1298
- Pin Compatible with 12-Bit LTC1860/LTC1861
- Guaranteed Operation to +125°C (MSOP Package)

### **APPLICATIONS**

- $\blacksquare$  High Speed Data Acquisition
- **Portable or Compact Instrumentation**
- Low Power Battery-Operated Instrumentation
- Isolated and/or Remote Data Acquisition

 $LT$ , LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

### **DESCRIPTION**

The LTC®1864/LTC1865 are 16-bit A/D converters that are offered in MSOP and SO-8 packages and operate on a single 5V supply. At 250ksps, the supply current is only 850μA. The supply current drops at lower speeds because the LTC1864/LTC1865 automatically power down between conversions. These 16-bit switched capacitor successive approximation ADCs include sample-andholds. The LTC1864 has a differential analog input with an adjustable reference pin. The LTC1865 offers a softwareselectable 2-channel MUX and an adjustable reference pin on the MSOP version.

The 3-wire, serial I/O, small MSOP or SO-8 package and extremely high sample rate-to-power ratio make these ADCs ideal choices for compact, low power, high speed systems.

These ADCs can be used in ratiometric applications or with external references. The high impedance analog inputs and the ability to operate with reduced spans down to 1V full scale, allow direct connection to signal sources in many applications, eliminating the need for external gain stages.

### **TYPICAL APPLICATION**

**Single 5V Supply, 250ksps, 16-Bit Sampling ADC**



#### **Supply Current vs Sampling Frequency**



1

## **ABSOLUTE MAXIMUM RATINGS**



#### **(Notes 1, 2)**



## **PIN CONFIGURATION**



# **ORDER INFORMATION**



## **ORDER INFORMATION**



Consult LTC Marketing for parts specified with wider operating temperature ranges.

For more information on lead free part marking, go to:<http://www.linear.com/leadfree/>

For more information on tape and reel specifications, go to:<http://www.linear.com/tapeandreel/>



## **CONVERTER AND MULTIPILEXER CHARACTERISTICS**

The  $\bullet$  denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  $T_A = 25^{\circ}$ C. V<sub>CC</sub> = 5V, V<sub>REF</sub> = 5V, f<sub>SCK</sub> = f<sub>SCK(MAX)</sub> as defined in Recommended Operating Conditions, unless otherwise noted.



## **DYNAMIC ACCURACY**

 $T_A = 25^{\circ}$ C.  $V_{CC} = 5V$ ,  $V_{REF} = 5V$ ,  $f_{SAMPLE} = 250$ kHz, unless otherwise noted.





### **DIGITAL AND DC ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes specifications which apply

over the full operating temperature range, otherwise specifications are T<sub>A</sub> = 25°C. V<sub>CC</sub> = 5V, V<sub>REF</sub> = 5V, unless otherwise noted.





### **RECOMMENDED OPERATING CONDITIONS The** ● **denotes specifi cations which apply over the**

full operating temperature range, otherwise specifications are T<sub>A</sub> = 25°C.





### **TIMING CHARACTERISTICS** The  $\bullet$  denotes specifications which apply over the full operating temperature

range, otherwise specifications are T<sub>A</sub> = 25°C. V<sub>CC</sub> = 5V, V<sub>REF</sub> = 5V, f<sub>SCK</sub> = f<sub>SCK(MAX)</sub> as defined in Recommended Operating Conditions, **unless otherwise noted.**



**Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

**Note 2:** All voltage values are with respect to GND.

Note 3: Integral nonlinearity is defined as deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.

**Note 4:** Channel leakage current is measured while the part is in sample mode.

**Note 5:** Guaranteed by design, not subject to test.



7

## **TYPICAL PERFORMANCE CHARACTERISTICS**





## **TYPICAL PERFORMANCE CHARACTERISTICS**







**Change in Gain Error vs Temperature**



**Histogram of 4096 Conversions of** 



FREQUENCY

FREQUENCY

**4096 Point FFT Nonaveraged** 



100 90 SNR<br>| | ₩ 80 | | |<br>SINAD<br>| | | 70 60 SINAD (dB) 50 40 30 ┯┷ V<sub>CC</sub> = 5V<br>V<sub>REF</sub> = 5V 20  $T_A = 25^{\circ}C$ 10  $V_{IN} = 0dB$  $\pmb{0}$ 1 10 100 1000  $F_{IN}$  (kHz) 18645 G16







## **PIN FUNCTIONS**

#### **LTC1864**

**VRFF (Pin 1):** Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to GND.

**IN+, IN– (Pins 2, 3):** Analog Inputs. These inputs must be free of noise with respect to GND.

**GND (Pin 4):** Analog Ground. GND should be tied directly to an analog ground plane.

**CONV (Pin 5):** Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part

#### **LTC1865 (MSOP Package)**

**CONV (Pin 1):** Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.

**CH0, CH1 (Pins 2, 3):** Analog Inputs. These inputs must be free of noise with respect to AGND.

**AGND (Pin 4):** Analog Ground. AGND should be tied directly to an analog ground plane.

**DGND (Pin 5):** Digital Ground. DGND should be tied directly to an analog ground plane.

**SDI (Pin 6):** Digital Data Input. The A/D configuration word is shifted into this input.

#### **LTC1865 (SO-8 Package)**

**CONV (Pin 1):** Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.

**CH0, CH1 (Pins 2, 3):** Analog Inputs. These inputs must be free of noise with respect to GND.

**GND (Pin 4):** Analog Ground. GND should be tied directly to an analog ground plane.

powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.

**SDO (Pin 6):** Digital Data Output. The A/D conversion result is shifted out of this pin.

**SCK (Pin 7):** Shift Clock Input. This clock synchronizes the serial data transfer.

**V<sub>CC</sub>** (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.

**SDO (Pin 7):** Digital Data Output. The A/D conversion result is shifted out of this output.

**SCK (Pin 8):** Shift Clock Input. This clock synchronizes the serial data transfer.

**V<sub>CC</sub>** (Pin 9): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.

**V<sub>RFF</sub>** (Pin 10): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to AGND.

**SDI (Pin 5):** Digital Data Input. The A/D configuration word is shifted into this input.

**SDO (Pin 6):** Digital Data Output. The A/D conversion result is shifted out of this output.

**SCK (Pin 7):** Shift Clock Input. This clock synchronizes the serial data transfer.

**V<sub>CC</sub>** (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.  $V_{REF}$  is tied internally to this pin.





## **FUNCTIONAL BLOCK DIAGRAM**





# LTC1864/LTC1865

### **TEST CIRCUITS**





#### **Voltage Waveforms for SDO Delay Times, topo and thDO**



#### Load Circuit for t<sub>dDO</sub>, t<sub>r</sub>, t<sub>f</sub>, t<sub>dis</sub> and t<sub>en</sub> *Local Compare SDO Rise and Fall Times, t<sub>r</sub>, t<sub>f</sub> t<sub>f</sub>*







NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL



#### **LTC1864 OPERATION**

#### **Operating Sequence**

The LTC1864 conversion cycle begins with the rising edge of CONV. After a period equal to  $t_{\text{CONV}}$ , the conversion is finished. If CONV is left high after this time, the LTC1864 goes into sleep mode drawing only leakage current. On the falling edge of CONV, the LTC1864 goes into sample mode and SDO is enabled. SCK synchronizes the data transfer with each bit being transmitted from SDO on the falling SCK edge. The receiving system should capture the data from SDO on the rising edge of SCK. After completing the data transfer, if further SCK clocks are applied with CONV low, SDO will output zeros indefinitely. See Figure 1.

#### **Analog Inputs**

The LTC1864 has a unipolar differential analog input. The converter will measure the voltage between the "IN+" and " $IN^-$ " inputs. A zero code will occur when  $IN^+$  minus  $IN^-$  equals zero. Full scale occurs when  $IN^+$  minus  $IN^$ equals  $V_{BFF}$  minus 1LSB. See Figure 2. Both the "IN+" and "IN–" inputs are sampled at the same time, so common mode noise on the inputs is rejected by the ADC. If "IN–" is grounded and  $V_{RFF}$  is tied to  $V_{CC}$ , a rail-to-rail input span will result on "IN+" as shown in Figure 3.

#### **Reference Input**

The voltage on the reference input of the LTC1864 defines the full-scale range of the A/D converter. The LTC1864 can operate with reference voltages from  $V_{CC}$  to 1V.













#### **LTC1865 OPERATION**

#### **Operating Sequence**

The LTC1865 conversion cycle begins with the rising edge of CONV. After a period equal to  $t_{\text{CONV}}$ , the conversion is finished. If CONV is left high after this time, the LTC1865 goes into sleep mode drawing only leakage current. The LTC1865's 2-bit data word is clocked into the SDI input on the rising edge of SCK after CONV goes low. Additional inputs on the SDI pin are then ignored until the next CONV cycle. The shift clock (SCK) synchronizes the data transfer with each bit being transmitted on the falling SCK edge and captured on the rising SCK edge in both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex). After completing the data transfer, if further SCK clocks are applied with CONV low, SDO will output zeros indefinitely. See Figure 4.

#### **Analog Inputs**

The two bits of the input word (SDI) assign the MUX configuration for the next requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the "+" and "–" signs in the selected row of the following table. In

single-ended mode, all input channels are measured with respect to GND. A zero code will occur when the "+" input minus the "–" input equals zero. Full scale occurs when the "+" input minus the " $-$ " input equals  $V_{REF}$ minus 1LSB. See Figure 5. Both the "+" and "-" inputs are sampled at the same time so common mode noise is rejected. The input span in the SO-8 package is fixed at  $V_{REF} = V_{CC}$ . If the "-" input in differential mode is grounded, a rail-to-rail input span will result on the "+" input.

#### **Reference Input**

The reference input of the LTC1865 SO-8 package is internally tied to  $V_{CC}$ . The span of the A/D converter is therefore equal to  $V_{CC}$ . The voltage on the reference input of the LTC1865 MSOP package defines the span of the A/D converter. The LTC1865 MSOP package can operate with reference voltages from 1V to  $V_{CC}$ .

**MUX ADDRESS Table 1. Multiplexer Channel Selection SGL/DIFF ODD/SIGN** 1 1 0 0  $\Omega$ 1 0 1 **CHANNEL # 0** + + – **1** + – + **GND** – – 18645 TBL1 SINGLE-ENDED MUX MODE **DIFFERENTIAL** MUX MODE



**Figure 4. LTC1865 Operating Sequence**

18645 F04



#### **GENERAL ANALOG CONSIDERATIONS**

#### **Grounding**

The LTC1864/LTC1865 should be used with an analog ground plane and single point grounding techniques. Do not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance, use a printed circuit board. The ground pins (AGND and DGND for the LTC1865 MSOP package and GND for the LTC1864 and LTC1865 SO-8 package) should be tied directly to the analog ground plane with minimum lead length.

#### **Bypassing**

For good performance, the  $V_{CC}$  and  $V_{RFF}$  pins must be free of noise and ripple. Any changes in the  $V_{CC}/V_{REF}$  voltage with respect to ground during the conversion cycle can

induce errors or noise in the output code. Bypass the  $V_{CC}$ and  $V_{\text{RFF}}$  pins directly to the analog ground plane with a minimum of 1μF tantalum. Keep the bypass capacitor leads as short as possible.

#### **Analog Inputs**

Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1864/LTC1865 have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem if source resistances are less than 200 $\Omega$  or high speed op amps are used (e.g., the LT®1211, LT1469, LT1807, LT1810, LT1630, LT1226 or LT1215). But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.



# LTC1864/LTC1865





LTC1864 Evaluation Circuit Schematic **LTC1864 Evaluation Circuit Schematic**



18645fb

16



**Component Side Silk Screen for LTC1864 Evaluation Circuit**



**Component Side Showing Traces (Note Sider Traces on Analog Side)**



**Ground Layer with Separate Analog and Digital Grounds** 



**Bottom Side Showing Traces (Note Almost No Analog Traces on Board Bottom)**



**Analog Ground Repeated**











**Figure 7. LTC1864 Manchester Receiver**



#### **Transmit LTC1864 Data Over Modular Telephone Wire Using Simple Transmitter/Receiver**

Figure 6 shows a simple Manchester encoder and differential transmitter suitable for use with the LTC1864. This circuit allows transmission of data over inexpensive telephone wire. This is useful for measuring a remote sensor, particularly when the cost of preserving the analog signal over a long distance is high.

Manchester encoding is a clock signal that is modulated by exclusive ORing with the data signal. The resulting signal contains both clock and data information and has an average duty cycle of 50%, that also allows transformer coupling. In practice, generating a Manchester encoded signal with an XOR gate will often produce glitches due to the skew between data and clock transitions. The D flip-flops in this encoder retime the clock and data such that the respective edges are closely aligned, effectively suppressing glitches. The retimed data and clock are then XORed to produce the Manchester encoded data, which is interfaced to telephone wire with an LTC1485 RS485 transceiver.

In order to synchronize to incoming data, the receiver needs a sequence to indicate the start of a data word. The transmitter schematic shows logic that will produce 31

zeros, a start bit, followed by the 16 data bits (one sample every 48 clock cycles) at a clock frequency of 1MHz set by the LTC1799 oscillator. Sending at least 18 zeros before each start bit ensures that if synchronization is lost, the receiver can resynchronize to a start bit under all conditions. The serial to parallel converter shown in Figure 7 requires 18 zeros to avoid triggering on data bits.

The Manchester receiver shown in Figure 7 was adopted from Xilinx application note 17-30 and would typically be implemented in an FPGA. The decoder clock frequency is nominally 8 times the transmit clock frequency and is very tolerant of frequency errors. The outputs of the decoder are data and a strobe that indicates a valid data bit. The data can be deserialized using shift registers as shown. The start bit resets the J-K/flip-flop on its way into the first shift register. When it appears at the  $QH_{IN}$  output of the second shift register, it sets the flip-flop that loads the parallel data into the output register.

With AC family CMOS logic at 5V the receiver clock frequency is limited to 20MHz; the corresponding transmitter clock frequency is 2.5MHz. If the receiver is implemented in an FPGA that can be clocked at 160MHz, the LTC1864 can be clocked at its rated clock frequency of 20MHz.



### **PACKAGE DESCRIPTION**



**MS8 Package 8-Lead Plastic MSOP** (Reference LTC DWG # 05-08-1660)

3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE

4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE

5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX



# LTC1864/LTC1865

## **PACKAGE DESCRIPTION**



**MS Package 10-Lead Plastic MSOP** (Reference LTC DWG # 05-08-1661)

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE

- 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX



### **PACKAGE DESCRIPTION**

**S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)** (Reference LTC DWG # 05-08-1610)





DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH \* SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD \*\*FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE



23

## **TYPICAL APPLICATION**

Sample Two Channels Simultaneously with a Single Input ADC **1996 And Account Additional Additional** 



## **RELATED PARTS**





