

October 1987 Revised January 2004

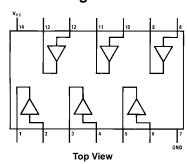
MM74C902 Hex Non-Inverting TTL Buffer

General Description

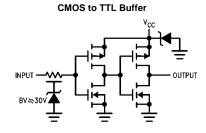
The MM74C902 hex buffer employs complementary MOS to achieve wide supply operating range, low power consumption, and high noise immunity. This buffer provides direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced $\ensuremath{V_{CC}}$ supply.

Features

■ Wide supply voltage range: 3.0V to 15V


■ Guaranteed noise margin: 1.0V■ High noise immunity: 0.45 V_{CC} (typ.)

■ TTL compatibility: Fan out of 2 driving standard TTL


Ordering Code:

Order Number	Package Number	Package Description
MM74C902M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C902N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Logic Diagram

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin -0.3V to $V_{CC} + 0.3V$ Voltage at Any Input Pin -0.3V to +15V-65°C to +150°C Storage Temperature Range (T_S)

Power Dissipation (P_D)

700 mW Dual-In-Line Small Outline 500 mW Operating Temperature Range (T_A) -40°C to +85°C Operating V_{CC} Range 3.0V to 15V

Absolute Maximum V_{CC}

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

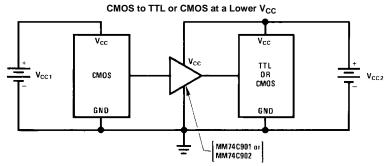
Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	V _{CC} = 5.0V			0.5	V
		V _{CC} = 10V			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μА
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
T _{CC}	Supply Current	V _{CC} = 15V		0.05	15	μΑ
TTL TO CN	nos	1	J		I	I.
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V IN(0)	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
CMOS TO	ŤΤL	1	J		I	ı
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5		1.5	V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V				V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V, I_{O} = -800 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	V _{CC} = 4.75V, I _O = 3.2 mA			0.4	V
	PRIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)	J		I	ı
I _{SOURCE}	Output Source Current	V _{CC} = 5.0V, V _{OUT} = 0V	-5.0			mA
	(P-Channel)	$T_A = 25$ °C, $V_{IN} = V_{CC}$				
I _{SOURCE}	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-20			mA
	(P-Channel)	$T_A = 25$ °C, $V_{IN} = V_{CC}$				
I _{SINK}	Output Sink Current	V _{CC} = 5.0V, V _{OUT} = V _{CC}	9.0			mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				
I _{SINK}	Output Sink Current	V _{CC} = 5.0V, V _{OUT} = 0.4V	3.8			mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				

18V

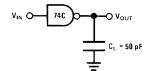
AC Electrical Characteristics (Note 2)

 $T_A = 25^{\circ}C, \ C_L = 50 \ \text{pF}, \ \text{unless otherwise noted}$

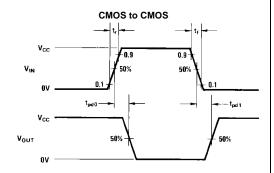

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1}	Propagation Delay Time	V _{CC} = 5.0V		57	90	ns
	to a Logical "1"	V _{CC} = 10V		27	40	ns
t _{pd0}	Propagation Delay Time	V _{CC} = 5.0V		54	90	ns
	to a Logical "0"	V _{CC} = 10V		25	40	ns
C _{IN}	Input Capacitance	Any Input (Note 3)		5.0		pF
C _{PD}	Power Dissipation Capacity	Per Buffer (Note 4)		50		pF

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

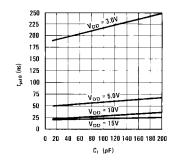

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.

Typical Application

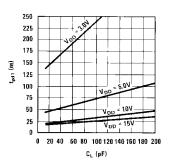


Note: V_{CC1} = V_{CC2}

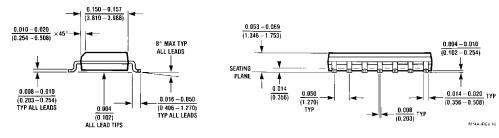
AC Test Circuit and Switching Time Waveforms



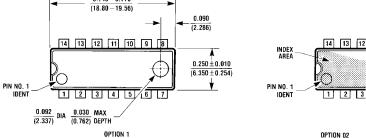
Note: Delays measured with input t_r , t_f = 20 ns.

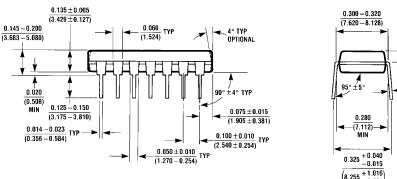


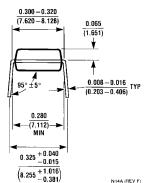
Typical Performance Characteristics


Typical Propagation Delay to a Logical "0"

Typical Propagation Delay to a Logical "1"







14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com