inter_{sil}

DATASHEET

Precision Digital Power Monitor with Real Time Alerts

ISL28025

The ISL28025 is a bidirectional high-side and low-side digital current sense and voltage monitor with a serial interface. The device monitors power supply current and voltage and provides the digital results along with calculated power. The ISL28025 provides tight accuracy of less than 0.1% for both voltage and current monitoring.

The V_{CC} power can either be externally supplied or internally regulated, which allows the ISL28025 to handle a common-mode input voltage range from OV to 60V. The wide range permits the device to handle telecom, automotive and industrial applications with minimal external circuitry.

Fault indication includes Bus Voltage window and overcurrent fast fault logic indication. The ISL28025 includes an integrated temperature sensor for monitoring.

The ISL28025 serial interface is PMBus compatible and operates down to 1.2V voltage. It draws an average current of just 1.3mA and is available in the space saving 16 ball WLCSP package. The parts operate across the full industrial temperature range from -40°C to +125°C.

Features

- Bus voltage sense range 0V to 60V
- Current gain error.....0.05%
- High or low (RTN) side sensing
- · Bidirectional current sensing
- · Auxiliary low voltage input channel
- $\Delta \sum$ ADC, 16-bit native resolution
- · Programmable averaging modes
- Internal 3.3V regulator
- · Internal temperature sense
- Over/undervoltage and current fault monitoring with 500ns detection delay
- I²C/SMBus/PMBus interface that handles 1.2V supply
- 55 I²C slave addresses

Applications

- Data processing servers
- DC power distribution
- Telecom equipment
- · Portable communication equipment
- DC/DC, AC/DC converters
- · Automotive power
- Many I²C ADC with alert applications

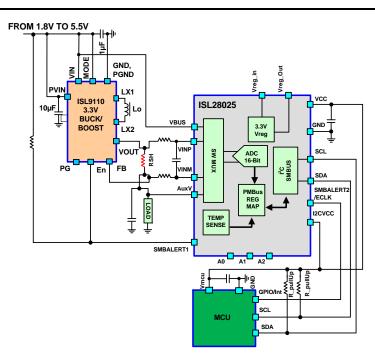
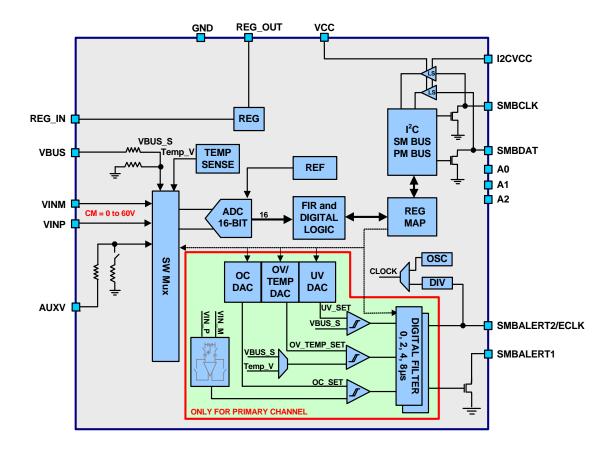
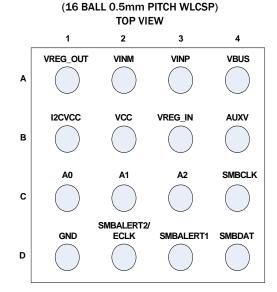


FIGURE 1. TYPICAL APPLICATION CIRCUIT

Table of Contents


Block Diagram	.4
Pin Configuration	.4
Pin Descriptions	
Ordering Information	
5	
Absolute Maximum Ratings	
Thermal Information	.6
Recommended Operating Conditions	. 6
Electrical Specifications	. 6
Typical Performance Curves	11
Functional Description	
-	
Overview	
VBUS	
VINP	
VINM	
AuxV	
VCC	
I2CVCC	
GND	
VReg In	21
VReg_out	
Address Pins (A0, A1, A2)	
SMBDAT	
SMBCLK	22
SMBALert Pins (SmBALERT1, SMBALERT2)2	22
ECLK	
	22
Communication Protocol	
Communication Protocol	23
-	23 23
Communication Protocol	23 23 24
Communication Protocol	23 23 24 24 24
Communication Protocol	23 24 24 24 24 24 24
Communication Protocol	23 24 24 24 24 24 24 24 25
Communication Protocol	23 24 24 24 24 24 25 25
Communication Protocol	23 24 24 24 24 25 25 25
Communication Protocol	23 24 24 24 24 25 25 25 25
Communication Protocol	23 23 24 24 24 25 25 25 25 25
Communication Protocol	23 23 24 24 24 25 25 25 25 25 25 25
Communication Protocol	23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Communication Protocol	23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Communication Protocol	23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Communication Protocol	23 224 224 225 225 25 225 225 225 225 225
Communication Protocol	23 224 224 225 225 225 225 225 225 225 225
Communication Protocol	23 23 24 24 25 25 25 25 25 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20
Communication Protocol	23 234 24 24 25 25 25 25 25 26 6
Communication Protocol	23 224 225 255 255 222 222 222 222 222 222
Communication Protocol	23 224 222 222 222 222 222 222 222 222 22
Communication Protocol	23 2244 2222 2222 222 222 222 222 222 222
Communication Protocol	23 2222 2222 2222 2222 222 222 222 222
Communication Protocol	23 2344445555555555566666666666666666666666
Communication Protocol	23 234445555555555666666666
Communication Protocol	23 2344455555555556666666677

Measurement Registers	
0xD6 Read Vshunt Out (R)	
0x8B Read Vout (R)	
0x8C Read IOut (R)	
0xD8: Read Peak Min IOUT (R)	
0xD9 Read Peak Max lout (R)	
0x96 Read Pout (R)	
0x8D Read Temperature (R)	
Threshold Detectors	
OxDA Vout OV Threshold Set (R/W)	
OV_OT_Sel D[9]	
Vbus_Thres_Rng D[8:6]	
Vbus_OV_OT_Set D[5:0]	
OxDB Vout UV Threshold Set (R/W)	
Vbus_UV_Set D[4:0]	
0xDC I _{out} OC Threshold Set (R/W)	
lout_ Dir D[9]	
Vshunt_Thres_Rng D[6]	
SMB Alert.	
OxDD Configure Interrupts (R/W)	
Alert2_FeedThr D[14:12]	32
Alert1_FeedThr D[11:9]	
OC_FIL D[8:7]	
UV_FIL D[6:5]	
OV_FIL D[4:3]:	
OC_EN D[2]	
OV_EN D[1]	
UV_EN D[0]	
OxDE Force Feed-Through Alert Register (R/W)	
A2POL D[3], A2POL D[2]	
FORCEA2 D[1], FORCEA1 D[0]	
0x03 Clear Faults (S)	
0x7A Status Vout (R/W)	
Vout OV Warning D[6]	
Vout UV Warning D[5]	
0x7B Status lout (R/W)	
lout OC Warning D[5]	
0x7D Status Temperature (R/W)	
OT Warning D[6] 0x7E Status CML (R/W)	
USCMD D[7]	
USDATA D[6]	
PECERR D[5]	
COMERR D[1]	
0x78 Status Byte(R/W)	
BUSY D[7]	
Temperature D[2]	
CML D[1]	
0x79 Status Word (R/W)	
V _{out} D[15]	
l _{out} D[14]:	
OX1B SMBALERT MASK (BR/BW)	35
0x1B SMBALERT MASK (BR/BW) 0xDF SMBALERT2 MASK (BR/BW)	
OX1B SMBALERT MASK (BR/BW) OxDF SMBALERT2 MASK (BR/BW) SMBALERT1 Response Address	35


External Clock Control35
0xE5 Configure External Clock (R/W)
ExtCLK_EN D[7]35
SMBALERT2_OEN D[6]35
EXTCLKDIV D[3:0]
SMBus/I ² C Serial Interface
Protocol Conventions
SMBus, PMBus Support37
Device Addressing37
Write Operation
Read Operation
Group Command
Fast Transients40
Overranging
Shunt Resistor Selection
Trace Width42
Trace Routing43

Connecting Sense Traces to the Current Sense Resistor 43
Magnetic Interference 44
A Trace as a Sense Resistor 44
Lossless Current Sensing (DCR) 45
Generic Buck/Boost Regulator POL Circuit
Using the ISL28025 to Measure AC Currents
Using the ISL28025 as a Sensor Monitor
Real Time Power Monitor System for Real Time Operating
Systems, RTOS 48
A Slower Measurement of Power
An ISL28025 Used as a Control and Alert for a Multicell
Balancing Circuit
PMBus Compatible Products Simplifies System Designs and
Programming Them 51
Revision History
About Intersil
Package Outline Drawing

Block Diagram

Pin Configuration

ISL28025

Submit Document Feedback 4 intersil

Pin Descriptions

16 PIN WLCSP	PIN NAME	TYPE/DIR	PIN DEFINITION		
A1	VREG_OUT	Power	Voltage regulator output, proper decoupling cap should be connected to this pin.		
A2	VINM	Analog Input	Current sense minus input		
A3	VINP	Analog Input	Current sense plus input		
A4	VBUS	Power	VBUS voltage sense		
B1	I2CVCC	Power	C level shifter power supply, this pin should be connected to VCC pin if level shifters are not sed.		
B2	VCC	Power	Chip power supply		
B3	VREG_IN	Power	/oltage regulator input. This pin should be connected to ground in case voltage regulator is not used.		
B4	AUXV	Analog Input	Auxiliary port single-ended input		
C1	A0	Digital Input	I ² C address input		
C2	A1	Digital Input	I ² C address input		
C3	A2	Digital Input	I ² C address input		
C4	SMBCLK	Digital Input	SMBUS/I ² C clock input		
D1	GND	Power	Ground		
D2	SMBALERT2/ECLK	Digital Input/Output	External ADC clock input or CPU Interrupt signal. It is used as CPU interrupt signal only when this pin is not configured as external clock input.		
D3	SMBALERT1	Digital Output	SMBus Alert1, open collector output		
D4	SMBDAT	Digital Input	SMBus/I ² C data		

Ordering Information

PART NUMBER (<u>Notes 1, 2, 3</u>)	PART MARKING	V _{BUS} OPTION (V)	PACKAGE Tape & Reel (Pb-Free)	PKG. DWG. #
ISL28025FI12Z-T	2512	12	16 Ball WLCSP	W4x4.16C
ISL28025FI12Z-T7A	2512	12	16 Ball WLCSP	W4x4.16C
ISL28025FI60Z-T	2560	60	16 Ball WLCSP	W4x4.16C
ISL28025FI60Z-T7A	2560	60	16 Ball WLCSP	W4x4.16C
ISL28025EVKIT1Z	Evaluation Kit			
ISL28025EVAL1Z	Evaluation Board			

NOTES:

1. Please refer to $\underline{\text{TB347}}$ for details on reel specifications.

2. These Intersil Pb-free WLCSP and BGA packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAgCu - e1 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free WLCSP and BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

3. For Moisture Sensitivity Level (MSL), please see product information page for ISL28025. For more information on MSL please see techbrief TB363.

Absolute Maximum Ratings

VCC	V
I2C_VCC Voltage	V
VBUS (ISL28025FI60), REG_IN	V
VBUS (ISL28025FI12)	V
Common Mode Input Voltage (VINP, VINM)	
Differential Input Voltage (VINP, VINM) ±63	V
AUXVVCC - GNE	כ
Input Voltage (Digital Pins) GND - 0.3 to I2CVCC + 0.3	V
Output Voltage (Digital Pins) GND - 0.3 to I2CVCC + 0.3	V
Output Current (REG_OUT) 10mA	4
Open Drain Output Current 10mA	4
Open Drain Voltage (SMBALERT1) 24	V
ESD Ratings	
Human Body Model	V
Machine Model	V
Charged Device Model	V
Latch-up±100mA (at +125°C)

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C∕W)	θ _{JC} (°C/W)
16 Ball WLCSP (<u>Notes 4</u> , <u>5</u>)	80	1
Maximum Storage Temperature Range	65	5°C to +150°C
Maximum Junction Temperature (T _{JMAX})		+150°C
Pb-Free Reflow Profile		see <u>TB493</u>

Recommended Operating Conditions

Ambient Temperature Range (T _A)	40°C to +125°C
---	----------------

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 4. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief <u>TB379</u>.
- 5. For θ_{JC} the "case temp" location is taken at the package top center.

Electrical Specifications $T_A = +25 \text{ °C}, I^2 \text{ CVCC} = V_{\text{CC}} = 3.3 \text{ V}, V_{\text{INP}} = V_{\text{BUS}} = 12 \text{ V}, V_{\text{SENSE}} = V_{\text{INP}} - V_{\text{INM}} = 80 \text{ mV}, \text{ Aux V} = 3 \text{ V}, \text{ Conversion}$
Time: Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. All voltages with respect to GND pin. Temperature limits
established by characterization.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 6</u>)	TYP	MAX (<u>Note 6</u>)	UNITS
PRIMARY CHAI	NNEL				+	+
V _{SHUNT}	V _{SHUNT} Measurement Range (V _{INP} to V _{INM})		0		±81.91	mV
Step_shunt	1LSB Step Shunt Voltage			2.5		μV
Vshunt_vos	V _{SHUNT} Offset Voltage			±2.5	±50	μV
Vshunt_TC	V _{SHUNT} Offset Voltage vs Temperature	T = -40°C to +125°C		±0.04	±0.3	µV∕°C
Vshunt_CMRR	V _{SHUNT} Vos vs Common Mode	ISL28025FI60Z V _{BUS} = 0V to 60V		±0.2	±2	μV/V
		ISL28025FI12Z V _{BUS} = 0V to 16.384V		±0.2	±2	μV/V
Vshunt_PSRR	V _{SHUNT} Vos vs Power Supply	V _{CC} = ±10% of V _{CC} Nominal		±0.45		µV/V
lvin	V _{IN} Input Leakage Current	V _{IN} = V _{SHUNT} Input Path Selected, OC Detector Disabled		15	20	μA
		V _{IN} = V _{SHUNT} Input Path Selected, OC Detector Enabled		30	40	μA
		V _{IN} = V _{SHUNT} Input Path Disabled, OC Detector Disabled		0.05	0.1	μA
Vbus	Usable Bus Voltage Measurement Range	ISL28025FI60Z	0		60	v
		ISL28025FI12Z	0		16.384	v
Step_Vbus	1LSB Step Bus Voltage	ISL28025FI60Z		1		mV
		ISL28025FI12Z		0.25		mV
Vbus_vos	V _{BUS} Offset Voltage	ISL28025FI60Z	-20	±1	20	mV
		ISL28025FI12Z	-5	±0.25	5	mV

intersil

ISL28025

Electrical Specifications $T_A = +25 \text{ °C}$, $I^2CVCC = V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, $V_{SENSE} = V_{INP} - V_{INM} = 80mV$, Aux V = 3V, Conversion Time: Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. All voltages with respect to GND pin. Temperature limits established by characterization. (Continued)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 6</u>)	ТҮР	MAX (<u>Note 6</u>)	UNITS
Vbus_TC	V _{BUS} Offset Voltage vs Temperature	ISL28025FI60Z; T = -40 °C to +125 °C		±4	±100	µV∕°C
		ISL28025FI12Z; T = -40 °C to +125 °C		±1	±100	µV∕°C
Vbus_Vco	V _{BUS} Voltage Coefficient			50		ppm/V
Vbus_PSRR	V _{BUS} Vos vs Power Supply	ISL28025FI60Z; V _{CC} = ±10% of V _{CC} Nominal		±500		µV/V
		ISL28025FI12Z V _{CC} = ±10% of V _{CC} Nominal		±125		µV/V
Zin_Vbus	Input Impedance V _{BUS}	ISL28025FI60Z		600		kΩ
		ISL28025FI12Z		150		kΩ
AUX CHANNEL						
Vauxv	Usable AVXV Voltage Measurement Range		0		VCC	v
Step_auxv	1LSB Step AUXV Voltage			100		μV
Vauxv_vos	V _{AUXV} Offset Voltage			±0.3	±4	mV
Vauxv_TC	V _{AUXV} Offset Voltage vs Temperature	T = -40°C to +125°C		±0.2	±22	µV∕°C
Vauxv_PSRR	V _{AUXV} Vos vs Power Supply	$V_{CC} = \pm 10\%$ of V_{CC} Nominal		±1		mV/V
Zin_auxv	Auxv Input Impedance	Input Path Selected		200		kΩ
		Input Path Disabled		10		MΩ
ADC PARAMET	ERS					
	ADC Resolution			16		Bits
	Primary Shunt Voltage Gain Error			±0.05	±0.25	%
		T = -40°C to +125°C		0	±60	ppm/°C
	Primary Bus Voltage Gain Error			±0.05	±0.25	%
		T = -40°C to +125°C		10	±70	ppm/°C
	Aux Bus Voltage Gain Error			±0.05	±0.25	%
		T = -40°C to +125°C		10	±65	ppm/°C
	Differential Nonlinearity			±1		LSB
ADC TIMING						
t _{s Power-up}	ADC Conversion Time Resolution	ADC[2:0] = 0h		64	70.4	μs
		ADC[2:0] = 1h		128	140.8	μs
		ADC[2:0] = 2h		256	281.6	μs
		ADC[2:0] = 3h		512	563.2	μs
		ADC[2:0] = 4, 5h		1.024	1.126	ms
		ADC[2:0] = 6, 7h		2.048	2.253	ms

ISL28025

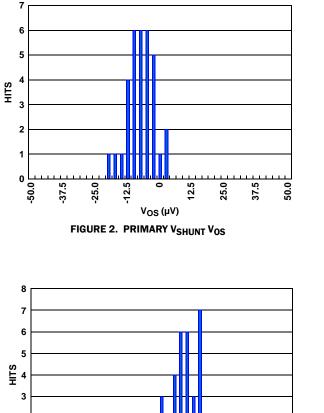
Electrical Specifications $T_A = +25 \text{ °C}$, $I^2CVCC = V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, $V_{SENSE} = V_{INP} - V_{INM} = 80mV$, Aux V = 3V, Conversion Time: Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. All voltages with respect to GND pin. Temperature limits established by characterization. (Continued)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 6</u>)	TYP	MAX (<u>Note 6</u>)	UNITS
THRESHOLD D	ETECTORS					<u>.</u>
	Overvoltage (OV) V _{BUS} Threshold Voltage Range	Vbus_Thres_Rng[2:0] = ALL	25		125	% of FS
	Overvoltage (OV) V _{BUS} Threshold DAC Step Size	Vbus_Thres_Rng[2:0] = ALL		1.56		% of FS
	Undervoltage (UV) V _{BUS} Threshold Voltage Range	Vbus_Thres_Rng[2:0] = ALL	0		100	% of FS
	Undervoltage (UV) V _{BUS} Threshold DAC Step Size	Vbus_Thres_Rng[2:0] = ALL		1.56		% of FS
	V _{BUS} Threshold Detector Full Scale	Vbus_Thres_Rng[2:0] = 0; OT_SEL = 0		48		v
	Settings ISL28025FI60Z	Vbus_Thres_Rng[2:0] = 1; OT_SEL = 0		24		v
		Vbus_Thres_Rng[2:0] = 2; OT_SEL = 0		12		v
		Vbus_Thres_Rng[2:0] = 3; OT_SEL = 0		5		v
		Vbus_Thres_Rng[2:0] = 4; OT_SEL = 0		3.3		v
		Vbus_Thres_Rng[2:0] = 5; OT_SEL = 0		2.5		v
	V _{BUS} Threshold Detector Full Scale	Vbus_Thres_Rng[2:0] = 0; OT_SEL = 0		12		v
	Settings ISL28025FI12Z	Vbus_Thres_Rng[2:0] = 1; OT_SEL = 0		6		v
		Vbus_Thres_Rng[2:0] = 2; OT_SEL = 0		3		v
		Vbus_Thres_Rng[2:0] = 3; OT_SEL = 0		2.5		v
		Vbus_Thres_Rng[2:0] = 4; OT_SEL = 0		0.825		v
		Vbus_Thres_Rng[2:0] = 5; OT_SEL = 0		0.625		v
	Over-temperature Threshold Detector Range	OT_SEL = 1	-40		135	°C
	Over-temperature Threshold Detector Resolution Error			±5		°C
	Overcurrent (OC) V _{SHUNT} Threshold Voltage Range	OCRNG = ALL	25		125	% of FS
	Overcurrent (OC) V _{SHUNT} Threshold DAC Step Size	OCRNG = ALL		1.56		% of FS
	V _{SHUNT} Threshold Detector Full Scale	OCRNG = 0		80		mV
	Settings	OCRNG = 1		40		mV
VOLTAGE REGU	JLATOR SPECIFICATION				+	
	Input Voltage at REG_IN		4.5		60	v
	Output Regulation Voltage		3.18	3.3	3.35	v
	Line Regulation	V _{IN} 4.5V to 60V		53	150	μV/V
	Load Regulation	I _{LOAD} = 3.3mA to 6mA		0.2	1.4	mV/mA
	Capacitance Drive		0.01		10	μF
	Output Short Circuit	T = -40°C to +125°C		10		mA
	Max Load Current	T = -40 °C to +125 °C		6		mA
	Start-up time			1		ms

Electrical Specifications $T_A = +25 \text{ °C}$, $I^2CVCC = V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, $V_{SENSE} = V_{INP} - V_{INM} = 80mV$, Aux V = 3V, Conversion Time: Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. All voltages with respect to GND pin. Temperature limits established by characterization. (Continued)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 6</u>)	ТҮР	MAX (<u>Note 6</u>)	UNITS
TEMPERATURE	SENSOR					<u></u>
	Temperature Sensor Measurement Range		-40		125	°C
	Temperature Accuracy	T = +25°C		+3.2		°C
	Temperature Resolution			0.5		°C
	Measurement Time			0.5		ms
SMBus/I ² C INT	ERFACE SPECIFICATIONS		ļ		+	ļ
V _{IL}	SMBDAT and SMBCLK Input Buffer LOW Voltage		-0.3		0.3 x I ² CVCC	v
V _{IH}	SMBDAT and SMBCLK Input Buffer HIGH Voltage		0.7 x I ² CVCC		I ² CVCC + 0.3	v
Hysteresis	SMBDAT and SMBCLK Input Buffer Hysteresis			0.05 x I ² CVCC		v
V _{OL}	SMBDAT Output Buffer LOW Voltage, Sinking 3mA	I ² CVCC = 5V, I _{OL} = 3mA	0	0.02	0.4	v
C _{PIN}	SMBDAT and SMBCLK Pin Capacitance	$T_{A} = +25 \text{ °C, } f = 1 \text{MHz, } I^2 \text{CVCC} = 5 \text{V},$ $V_{\text{IN}} = 0 \text{V, } V_{\text{OUT}} = 0 \text{V}$			10	pF
^f SMBCLK	SMBCLK Frequency				400	kHz
t _{IN}	Pulse Width Suppression Time at SMBDAT and SMBCLK Inputs	Any pulse narrower than the max spec is suppressed			50	ns
t _{AA}	SMBCLK Falling Edge to SMBDAT Output Data Valid	SMBCLK falling edge crossing 30% of I ² CVCC, until SMBDAT exits the 30% to 70% of I ² CVCC window			900	ns
t _{BUF}	Time the Bus Must be Free Before the Start of a New Transmission	SMBDAT crossing 70% of I^2 CVCC during a STOP condition, to SMBDAT crossing 70% of I^2 CVCC during the following START condition	1300			ns
tLOW	Clock LOW Time	Measured at the 30% of I ² CVCC crossing	1300			ns
thigh	Clock HIGH Time	Measured at the 70% of I ² CVCC crossing	600			ns
^t su:sta	START Condition Setup Time	SMBCLK rising edge to SMBDAT falling edge. Both crossing 70% of I ² CVCC	600			ns
^t hd:sta	START Condition Hold Time	From SMBDAT falling edge crossing 30% of I ² CVCC to SMBCLK falling edge crossing 70% of I ² CVCC	600			ns
^t su:dat	Input Data Setup Time	From SMBDAT exiting the 30% to 70% of V_{CC} window, to SMBCLK rising edge crossing 30% of I ² CVCC	100			ns
^t hd:dat	Input Data Hold Time	From SMBCLK falling edge crossing 30% of I ² CVCC to SMBDAT entering the 30% to 70% of I ² CVCC window	20		900	ns
^t su:sto	STOP Condition Setup Time	From SMBCLK rising edge crossing 70% of I ² CVCC, to SMBDAT rising edge crossing 30% of I ² CVCC	600			ns

ISL28025


Electrical Specifications $T_A = +25 \text{ °C}$, $I^2CVCC = V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, $V_{SENSE} = V_{INP} - V_{INM} = 80mV$, Aux V = 3V, Conversion Time: Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. All voltages with respect to GND pin. Temperature limits established by characterization. (Continued)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 6</u>)	ТҮР	MAX (<u>Note 6</u>)	UNITS
^t hd:sto	STOP Condition Hold Time	From SMBDAT rising edge to SMBCLK falling edge. Both crossing 70% of I ² CVCC	600			ns
^t DH	Output Data Hold Time	From SMBCLK falling edge crossing 30% of I ² CVCC, until SMBDAT enters the 30% to 70% of I ² CVCC window	0			ns
t _R	SMBDAT and SMBCLK Rise Time	From 30% to 70% of I ² CVCC	20 + 0.1 x Cb		300	ns
t _F	SMBDAT and SMBCLK Fall Time	From 70% to 30% of I ² CVCC	20 + 0.1 x Cb		300	ns
Cb	Capacitive Loading of SMBDAT or SMBCLK	Total on-chip and off-chip	10		400	pF
R _{PU}	SMBDAT and SMBCLK Bus Pull-up Resistor Off-chip	Maximum is determined by t_R and t_F For Cb = 400pF, max is about $2k\Omega \sim 2.5k\Omega$. For Cb = 40pF, max is about $15k\Omega \sim 20k\Omega$	1			kΩ
POWER SUPPL	Ŷ					
Vvcc	Power Supply Voltage at VCC		3.0	3.3	5.5	v
Vi2cvcc	Power Supply Voltage at I ² CVCC	f = DC to 400kHz	1.2	3.3	5.5	
	Only ADC in Conversion mode	All other blocks are disabled		690	830	μA
	Only ADC in Idle Mode	All other blocks are disabled		640	705	μA
	Only Threshold Detectors	All three detectors are active		760	945	μA
	Fully Enabled Chip Current	All functional blocks enabled		1000	1260	μΑ
	Fully Disabled Chip Current	All functional blocks disabled		5	15	μA
lvreg_in	Voltage Regulator	Vreg_in = 4.5V to 60V; R _{LOAD} = open		26	35	μA
li2cvcc	I ² C Supply Current	SMBCLK = 100kHz; I ² CVCC = 3.3V		15		μΑ
li2cvcc_pd	I ² C Idle Supply Current	Input signals are static		100		nA

NOTE:

6. Parameters with MIN and/or MAX limits are 100% tested at +25 °C, unless otherwise specified. Compliance to datasheet limits is assured by one or more of the following methods: production test, characterization and design.

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Auxv = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified.

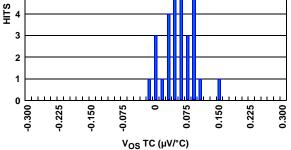


FIGURE 4. PRIMARY V_{SHUNT} V_{OS} TC (-40°C TO +125°C)

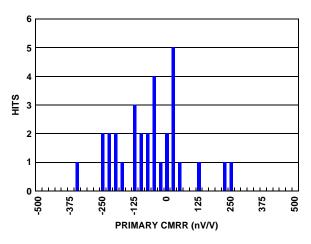


FIGURE 6. PRIMARY V_{SHUNT} CMRR, CMV = (0V TO 60V)

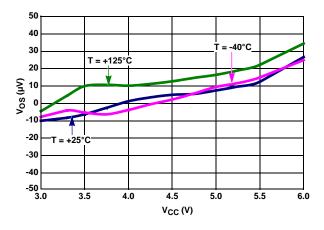


FIGURE 3. PRIMARY VSHUNT VOS VS VCC

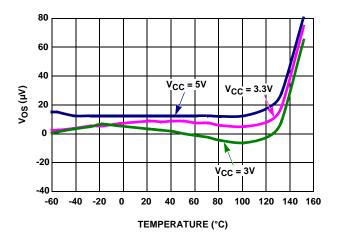
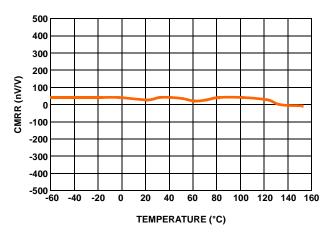
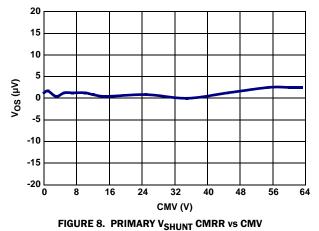




FIGURE 5. PRIMARY V_{SHUNT} VOS vs TEMPERATURE

Typical Performance Curves $T_A = +25 \degree C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Auxv = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. **(Continued)**



FIGURE 9. PRIMARY V_{SHUNT} AC CMRR vs FREQUENCY

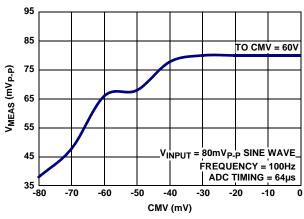


FIGURE 10. PRIMARY VSHUNT COMMON MODE RANGE

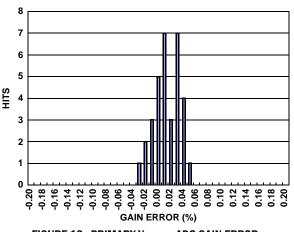
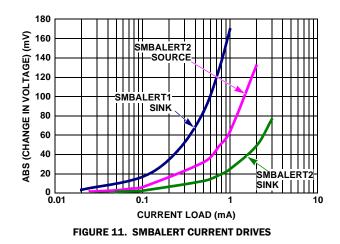



FIGURE 12. PRIMARY VSHUNT ADC GAIN ERROR

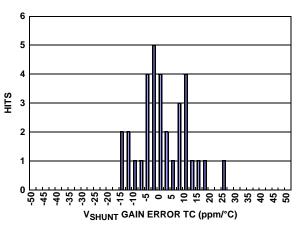


FIGURE 13. PRIMARY VSHUNT ADC GAIN ERROR TC

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. (Continued)

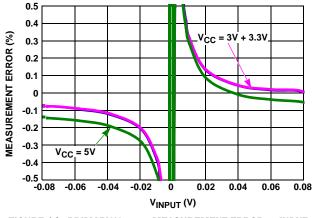


FIGURE 14. PRIMARY VSHUNT MEASUREMENT ERROR vs INPUT

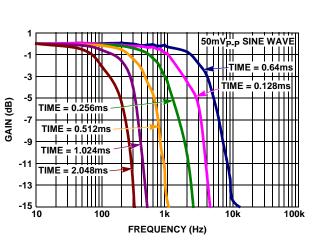
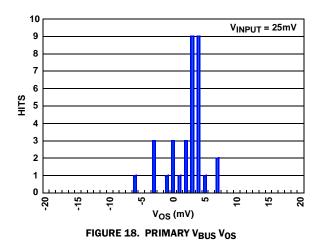



FIGURE 16. PRIMARY VSHUNT BANDWIDTH vs ADC TIMING

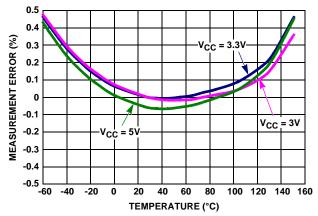


FIGURE 15. PRIMARY V_{SHUNT} MEASUREMENT ERROR vs TEMPERATURE

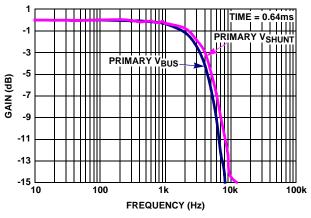


FIGURE 17. PRIMARY VSHUNT AND VBUS VS FREQUENCY

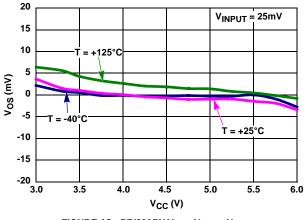
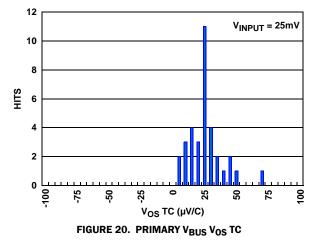



FIGURE 19. PRIMARY VBUS VOS VS VCC

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Auxv = 3V, conversion Time;

Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. (Continued)

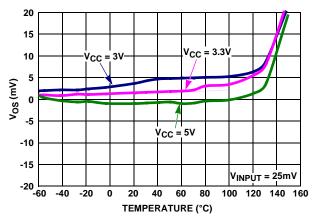
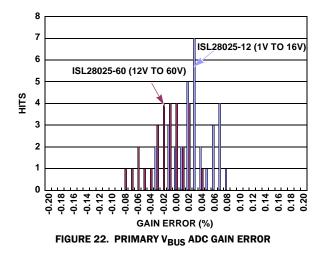



FIGURE 21. PRIMARY VBUS VOS VS TEMPERATURE

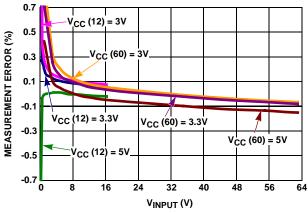


FIGURE 24. PRIMARY VBUS MEASUREMENT ERROR vs INPUT

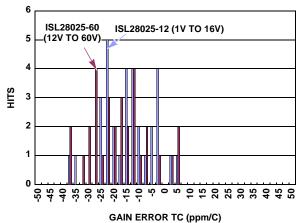
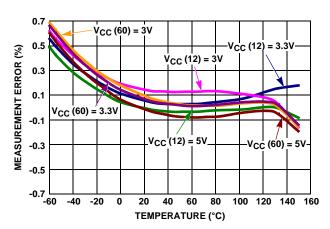



FIGURE 23. PRIMARY VBUS ADC GAIN ERROR TC

ISL28025

Typical Performance Curves $T_A = +25 \degree C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. (Continued)

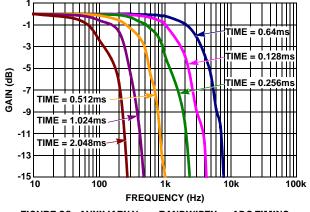
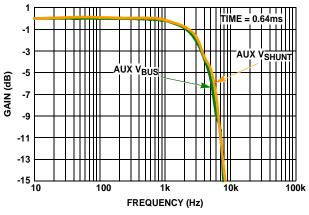
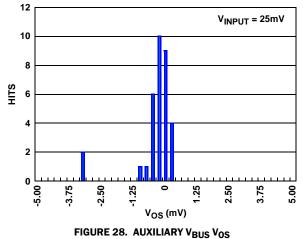


FIGURE 26. AUXILIARY $\mathrm{V}_{\mathrm{BUS}}$ BANDWIDTH vs ADC TIMING

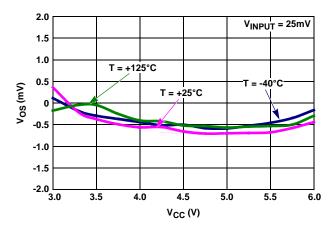
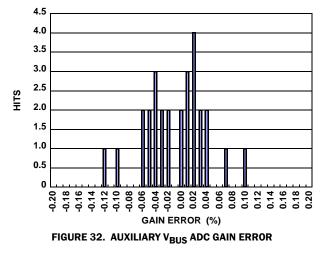
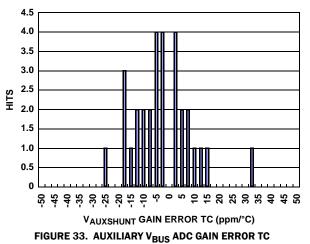
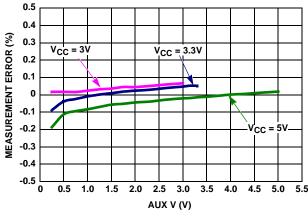


FIGURE 27. AUXILIARY VSHUNT AND VBUS VS FREQUENCY







ISL28025

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. **(Continued)**

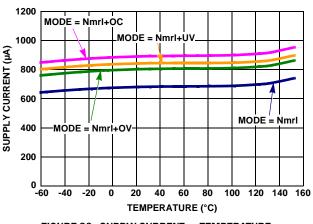


FIGURE 36. SUPPLY CURRENT vs TEMPERATURE

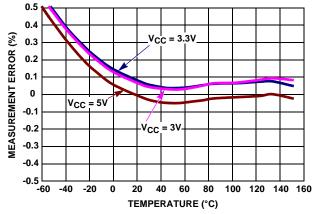
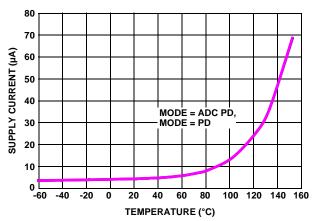
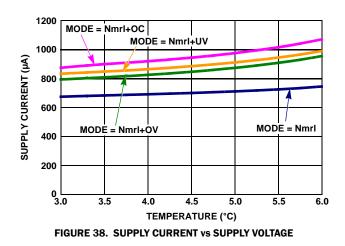




FIGURE 35. AUXILIARY VBUS MEASUREMENT ERROR vs TEMPERATURE

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. **(Continued)**

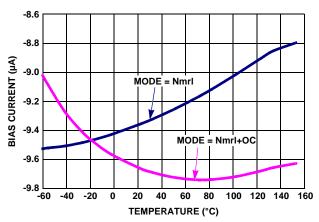


FIGURE 40. PRIMARY VSHUNT BIAS CURRENT vs TEMPERATURE

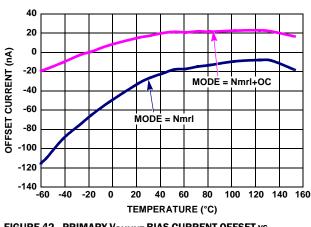


FIGURE 39. SUPPLY CURRENT vs SUPPLY VOLTAGE (POWER-DOWN MODES)

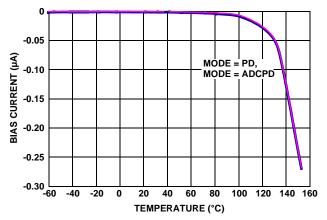
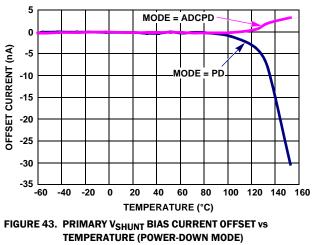
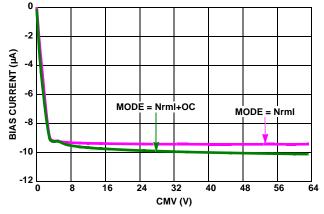




FIGURE 41. PRIMARY VSHUNT BIAS CURRENT vs TEMPERATURE (POWER-DOWN MODE)

Typical Performance Curves $T_A = +25 \degree C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. (Continued)

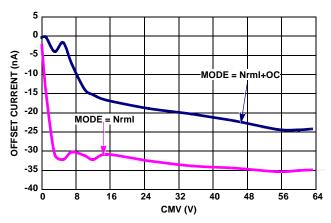
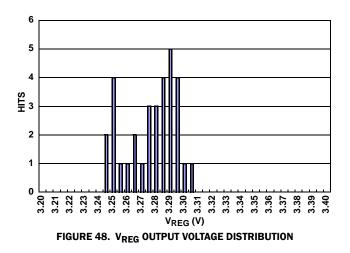



FIGURE 46. PRIMARY VSHUNT OFFSET CURRENT vs COMMON MODE VOLTAGE

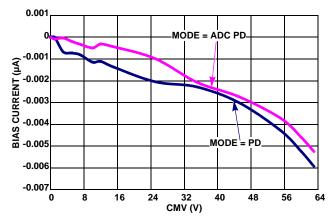


FIGURE 45. PRIMARY V_{SHUNT} BIAS CURRENT vs COMMON MODE **VOLTAGE (POWER-DOWN MODES)**

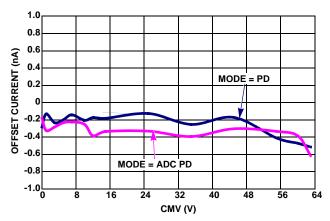


FIGURE 47. PRIMARY $V_{\mbox{SHUNT}}$ OFFSET CURRENT vs COMMON MODE **VOLTAGE (POWER DOWN MODES)**

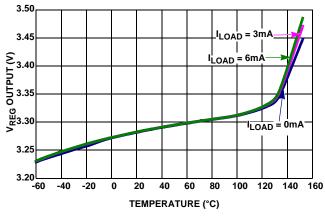
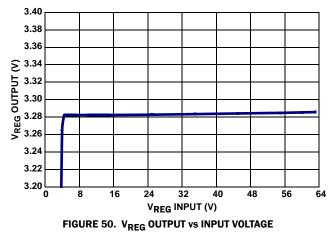



FIGURE 49. VREG OUTPUT vs TEMPERATURE

ISL28025

Typical Performance Curves $T_A = +25 \degree C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Aux = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. (Continued)

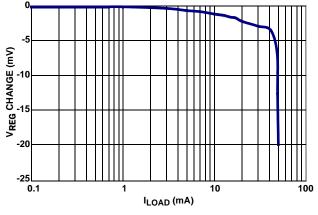
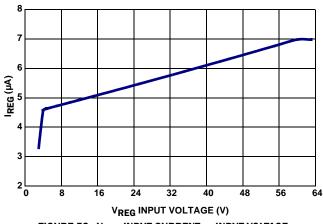
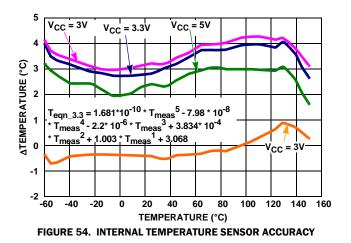




FIGURE 51. VREG OUTPUT vs CURRENT LOAD

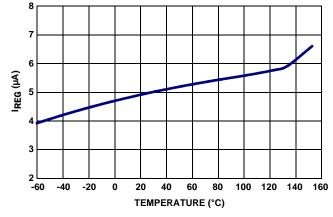


FIGURE 53. V_{REG} INPUT CURRENT vs TEMPERATURE

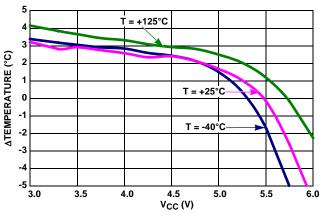


FIGURE 55. INTERNAL TEMPERATURE ACCURACY vs V_{CC}

Typical Performance Curves $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$, $V_{INP} = V_{BUS} = 12V$, Auxv = 3V, conversion Time; Aux = Primary = 2.05ms, Internal AVG Aux = Primary = 128, unless otherwise specified. **(Continued)**

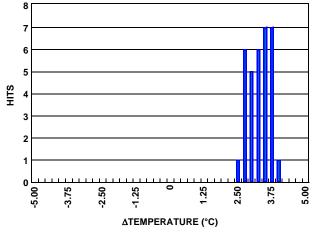


FIGURE 56. INTERNAL TEMPERATURE ACCURACY AT T = +25°C

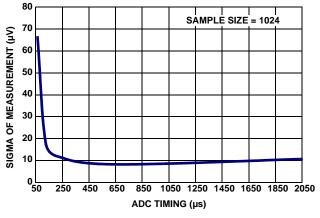
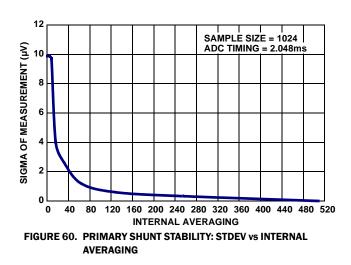



FIGURE 58. PRIMARY SHUNT STABILITY: STDEV vs ACQUISITION TIME

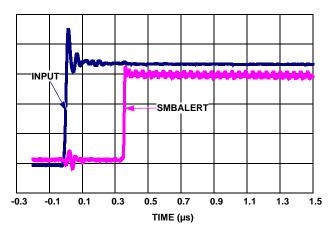


FIGURE 57. OV OR UV OR OC ALERT RESPONSE TIME

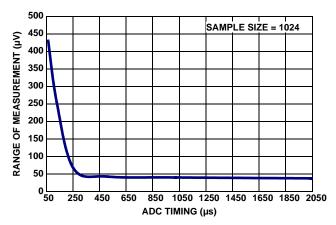
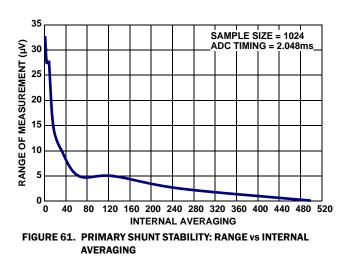



FIGURE 59. PRIMARY SHUNT STABILITY: RANGE vs ACQUISITION TIME

Functional Description

Overview

The ISL28025 is a digital current, voltage and power monitoring device for high and low side power monitoring in positive and negative voltage applications.

The digital power monitor (DPM) requires an external shunt resistor to enable current measurements. The shunt resistor translates the bus current to a voltage. The DPM measures the voltage across the shunt resistors and reports the measured value out digitally via an I^2C interface. A register within the DPM is reserved to store the value of the shunt resistor. The stored current sense resistor value allows the DPM to output a current value to an external digital device.

The ISL28025 can monitor the voltage, current and power of a power supply rail. The ISL28025 has an additional low voltage read to measure a voltage after the rail has been regulated. The primary channel will allow and measure voltages from 0V to 60V or from 0V to 16.384V, depending on the option of the ISL28025. The auxiliary channel can tolerate and measure voltage from 0V to VCC.

The ISL28025 has continuous fault detection for the primary channel. The DPM can be configured to set an alert in the instant of an overvoltage, undervoltage and/or overcurrent event. The response time of the alert is 500ns from the event. The ISL28025 has a temperature sensor with fault detection.

An 8-bit margin DAC, controllable through I²C communication, is incorporated into the DPM. The voltage margining feature allows for the adjustment of the regulated voltage to the load. The margin DAC can help in proving the load robustness versus the applied supply voltage.

The ISL28025 offers a 3.3V voltage regulator that can be used to power the chip in addition to low power peripheral circuitry. The DPM has an I^2C power pin that allows the I^2C master to set the digital communication supply voltage to the chip. The operating supply voltage for the DPM ranges from 3V to 5.5V. The device will accept I^2C supply voltages between 1.2V and 5.5V.

The ISL28025 accepts SMBus protocols up to 3.4MHz. The device is PMBus compliant up to 400MHz. The device has packet error code (PEC) functionality. The PEC protocol uses an 8-bit cyclic redundance check (CRC-8) represented by the polynomial $x^8+x^2+x^1+1$. The ISL28025 can be configured for up to 55 unique slave addresses using 3 address select bits. The large amount of addressing allows 55 parts to communicate on a single l^2C bus. It also gives the designer the flexibility to select a unique address when another slave address conflicts with the DPM on the same l^2C bus.

Functional Pin Descriptions

VBUS

VBUS is the power bus voltage input pin. The pin should be connected to the desired power supply bus to be monitored. The voltage range for the pin is from OV to 60V or OV to 16V depending on the ISL28025 version.

VINP

VINP is the shunt voltage monitor positive input pin. The pin connects to the most positive voltage of the current shunt resistor. The voltage range for the pin is from OV to 60V or OV to 16V depending on the ISL28025 version. The maximum measurable voltage differential between VINP and VINM is 80mV.

VINM

VINM is the shunt voltage monitor negative input pin. The pin connects to the most negative voltage of the current shunt resistor. The voltage range for the pin is from OV to 60V or OV to 16V depending on the ISL28025 version. The maximum measurable voltage differential between V_{INP} and V_{INM} is 80mV.

AUXV

AUXV is the power bus voltage input pin. The pin should be connected to the desired power supply bus to be monitored. The voltage range for the pin is from OV to VCC.

VCC

VCC is the positive supply voltage pin. VCC is an analog power pin. VCC supplies power to the device. The allowable voltage range is from 3V to 5.5V.

I2CVCC

I2CVCC is the positive supply voltage pin. I2CVCC is an analog power pin. I2CVCC supplies power to the digital communication circuitry, I^2C , of the device. The allowable voltage range is from 1.2V to 5.5V.

GND

GND is the device ground pin. For single supply systems, the pin connects to system ground. For dual supply systems, the pin connects to the negative voltage supply in the system.

VREG_IN

VREG_IN is the voltage regulator input pin. The operable input voltage range to the regulator is 4.5V to 60V.

VREG_OUT

VREG_OUT is the voltage regulator output pin. The regulated output voltage of 3.3V is sourced from the VREG_OUT pin.

ADDRESS PINS (A0, A1, A2)

A0, A1 and A2 are address selectable pins. The address pins are $I^2C/SMBus$ slave address select pins that are multilogic programmable for a total of 55 different address combinations.

There are four selectable levels for the address pins, I2CVCC, GND, SCL/SMBCLK, and SDA/SMBDAT. See <u>Table 44</u> for more details in setting the slave address of the device.

SMBDAT

SDA/SMBDAT is the serial data input/output pin. SDA/SMBDAT is a bidirectional pin used to transfer data to and from the device. The pin is an open drain output and may be wired with other open drain/collector outputs. The input buffer is always active (not gated). The open drain output requires a pull-up resistor for proper functionality. The pull-up resistor should be connected to I2CVCC of the device.

SMBCLK

SCL/SMBCLK is the serial clock input pin. The SCL/SMBCLK input is responsible for clocking in all data to and from the device. The input buffer on the pin is always active (not gated). The input pin requires a pull-up resistor to I2CVCC of the device.

SMBALERT PINS (SMBALERT1, SMBALERT2)

The SMBALERT pins are output pins. The SMBALRT1 is an open-drain output and requires a pull-up resistor to a power supply up to 24V. The SMBALERT2 has a push/pull output stage.

The SMBALERT pins are fault acknowledgment pins. The pin can be connected to peripheral circuitry to halt operations when a fault event occurs.

ECLK

ECLK is the External clock pin. ECLK is an input pin. The pin provides a connection to the system clock. The system clock is connected to the ADC. The acquisitions rate of the ADC can be varied through the ECLK pin. The pin functionality is set through a control register bit.

TABLE 1. ISL28025 REGISTER DESCRIPTIONS

REGISTER ADDRESS (HEX)	REGISTER NAME	FUNCTION	POWER ON RESET VALUE (HEX)	NUMBER OF BYTES	ACCESS TYPE
IC DEVICE D	ETAILS				
19	CAPABILITY	PMBus Supportability	BO	1	R
20	VOUT_MODE	Describes the ADC Read Back Format	40	1	R
99	PMBUS_REV	PMBus Revision	22	1	R
AD	IC_DEVICE_ID	Device ID	49534C3238303235	8	R
AE	IC_DEVICE_REV	Device Revision and Silicon Version	000002	3	R
GLOBAL IC C	ONTROLS				
12	RESTORE_DEFAULT_ALL	Soft Reset	N/A	0	W
01	OPERATION	Turns the Device On and Off	80	1	R/W
PRIMARY AN	ND AUXILIARY CHANNEL CONT	ROLS			
D2	SET_DPM_MODE	Configures the ISL28025	0A	1	R/W
D3	DPM_CONV_STATUS	Indicates the status of a conversion	N/A	1	R
D4	CONFIG_ICHANNEL	Shunt Inputs (Primary and Auxiliary) Configuration	0387	2	R/W
38	IOUT_CAL_GAIN	Calibration that Enables Primary Current Measurements	0000	2	R/W
D5	CONFIG_VCHANNEL	Bus Inputs (Primary and Auxiliary) Configuration	0387	2	R/W
D7	CONFIG_PEAK_DET	Enables Primary Channel Current Peak Detector	00	1	R/W
MEASUREM	ENT REGISTERS				
D6	READ_VSHUNT_OUT	Primary Shunt Measurement Value	0000	2	R
8B	READ_VOUT	Primary Bus Measurement Value	0000	2	R
8C	READ_IOUT	Primary Current Measurement Value	0000	2	R
D8	READ_PEAK_MIN_IOUT	Primary Current Max Measurement Value	7FFF	2	R
D9	READ_PEAK_MAX_IOUT	Primary Current Min Measurement Value	8001	2	R
96	READ_POUT	Primary Power Measurement Value	0000	2	R
E1	READ_VOUT_AUX	Auxiliary Bus Measurement Value	0000	2	R
8D	READ_TEMPERATURE_1	Internal Temperature Measurement Value	0000	2	R
THRESHOLD	DETECTORS				
DA	VOUT_OV_THRESHOLD_SET	Overvoltage/Over-Temperature Threshold Configuration	003F	2	R/W
DB	VOUT_UV_THRESHOLD_SET	Undervoltage Threshold Configuration	00	1	R/W
DC	IOUT_OC_THRESHOLD_SET	Overcurrent Threshold Configuration	003F	2	R/W

TABLE 1. ISL28025 REGISTER DESCRIPTIONS (Continued)

REGISTER ADDRESS (HEX)	REGISTER NAME	FUNCTION	POWER ON RESET VALUE (HEX)	NUMBER OF BYTES	ACCESS TYPE
SMB ALERT					
DD	CONFIG_INTR	Configure the Behavior of the Interrupts	0000	2	R/W
DE	FORCE_FEEDTHR_ALERT	Configure the Path of the Interrupt Signal	00	1	R/W
1B	SMBALERT_MASK	Alert Mask for the SMBALERT1 Pin	N/A	2	R/W
DF	SMBALERT2_MASK	Alert Mask for the SMBALERT2 Pin	N/A	1	R/W
03	CLEAR_FAULTS	Clears All Faults	N/A	0	w
7A	STATUS_VOUT	Alert Bits Related to the Primary Bus	00	1	R/W
7B	STATUS_IOUT	Alert Bit Related to the Primary Shunt	00	1	R/W
7D	STATUS_TEMPERATURE	Alert Bit Related to Temperature	00	1	R/W
7E	STATUS_CML	Alert Bits Related to Communication Errors	00	1	R/W
78	STATUS_BYTE	Alert Bits Related to Temperature and Device Status	00	1	R/W
79	STATUS_WORD	Alert Bits Related to all Primary Inputs	0000	2	R/W
EXTERNAL C	LOCK CONTROL		1	J. J.	
E5	CONFIG_EXT_CLK	Configures External Clock; Enable/Disable SMBALERT2	00	1	R/W

Communication Protocol

The DPM chip communicates with the host using PMBus commands. PMBus command structure is an industry SMBus standard for communicating with power supplies and converters. All communications to and from the chip use the SMBCLK and SMBDAT to communicate to the DPM master. The SMB pins require a pull-up resistor to enable proper operation. The default logic state of the communication pins are high when the bus is in an idle state.

The SMBus standard is a variant of the I^2C communication standard with minor differences with timing and DC parameters. SMBus supports packet error corrections (PEC) for data integrity certainty. The PMBus is the standardization of the SMBus register designation. The standardization is specific to power and converter devices.

The DPM employs the following command structures from the $\rm I^2C$ communication standard.

- 1. Send Byte
- 2. Write Byte/Word
- 3. Read Byte/Word
- 4. Read Block
- 5. Write Block

Packet Error Correction (PEC)

Packet Error correction is often used in environments where data being transferred to and from the device can be compromised. Applications where the device is connected by way of a cable is common use of PEC. The cable's integrity may be compromised resulting in error transactions between the master and the device. The ISL28025 uses an 8-bit cyclic redundance check (CRC-8). Following is an example of a flow algorithm for CRC-8 protocol.

Public Function crc8Decode(binStr As String) As Byte

Dim crc8(0 To 7) As Byte, index As Byte, dolnvert As Byte The input to the subroutine is a binary string consisting of

the slave address, the register address and data inputted to or received from the part. Anything inputted into or received from the device is part of the binary string (binStr) to be calculated by this routine.

Clear the crc8 variable. This variable is used to return the PEC value. For index = 0 To UBound(crc8)

crc8(index) = 0 Next index

index = 0

While index <> (Len(binStr))

```
index = index + 1
```

The If statement below reads the binary value of each bit in the binary string (binStr). If Mid(binStr, index, 1) = "1" Then

doInvert = 1 Xor crc8(7)

```
Else
```

```
doInvert = 0 Xor crc8(7)
End If
```

crc8(7) = crc8(6) crc8(6) = crc8(5) crc8(5) = crc8(4) crc8(4) = crc8(3) crc8(3) = crc8(2) crc8(2) = crc8(1) Xor doInvert crc8(1) = crc8(0) Xor doInvert crc8(0) = doInvertWend crc8Decode = 0For index = 0 To 7 'This assembles the crc8 value in byte form. $crc8Decode = crc8(index) * 2 ^ index + crc8Decode$

Next index 'crc8Decode is returned from this routine.

End Function

FIGURE 62. ALGORITHM TO CALCULATE A CRC8 (PEC) BYTE VALUE

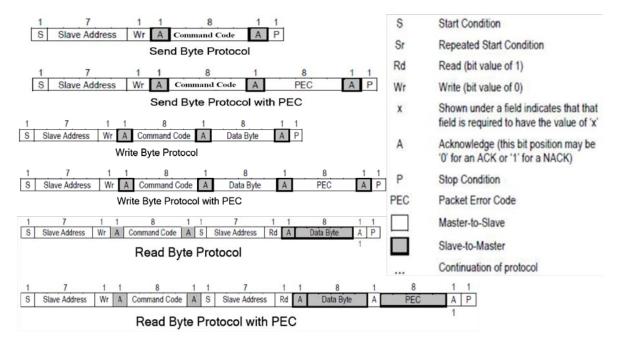


FIGURE 63. READ/WRITE SMBus PROTOCOLS WITH AND WITHOUT PEC NOTE: Diagrams copied from a SMBus specification document. The document can be uploaded at <u>http://smbus.org/specs/</u>

IC Device Details

0X19 CAPABILITY (R)

The capability register is a read only byte register that describes the supporting communication standard by the DPM chip.

BIT NUMBER	D7	D[6:5]	D4	D[3:0]
Bit Name	PEC	Max Bus Speed	SMB Alert Support	N/A
Default Value	1	01	1	0000

The DPM chip supports packet error correction (PEC) protocol. The maximum PMBus bus speed that the DPM supports is 400kHz. The DPM supports a higher speed option that is not compliant to the PMBus standard. The higher speed option is discussed later in the datasheet. The DPM chip has SMB alert pins which supports SMB alert commands.

0X20 V_{OUT} MODE (R)

The V_{OUT} Mode register is a readable byte register that describes the method to calculate read back values from the DPM such as voltage, current, power and temperature. The value for the register is 0x40. The register value represents a direct data read back format. For unsigned registers such as V_{BUS}, the register value is calculated using Equation 1.

Register Value =
$$\left[\sum_{n=0}^{15}\right]$$

 $\sum_{n=0}^{15} \left(\text{Bit}_{val} \cdot 2^{n} \right)$

(EQ. 1)

Otherwise, Equation 2 is used for signed readings.

Register Value =
$$\left[\sum_{n=0}^{14} \left(\text{Bit}_{val_{n}} \cdot 2^{n}\right)\right] - \left(\text{Bit}_{val_{15}} \cdot 2^{15}\right)$$

(EQ. 2)

n is the bit position within the register value. Bit_Val is the value of the bit either 1 or 0.

0X99 PMBUS REV (R)

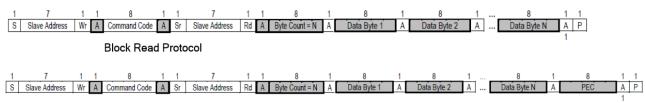

The PMBUS Rev register is a readable byte register that describes the PMBUS revision that the DPM is compliant to.

	TABLE 3.	0x99 PMBUS	REV REGISTER	DEFINITION
--	----------	------------	---------------------	------------

BIT NUMBER	D[7:4]	D[3:0]
Bit Name	PMBUS Rev Part I	PMBUS Rev Part II
Default Value	0010	0010

PMBUS Rev part 1 is a PMBus specification pertaining to electrical transactions and hardware interface. PMBUS Rev part 2 specification pertains to the command calls used to address the DPM.

A nibble of 0000 translates to revision 1.0 of either PMBUS revision. A nibble of 0001 equals 1.1 of either PMBus revision.

Block Read Protocol with PEC

FIGURE 64. BLOCK READ SMBUS PROTOCOLS WITH AND WITHOUT PEC.

NOTE: Diagrams copied from SMBus specification document. The document can be uploaded at http://smbus.org/specs/

OXAD IC DEVICE ID (BR)

The IC Device ID is a block readable register that reports the device product name being addressed. The product ID that is stored in the register is "ISL28025". Each character is stored as an ASCII number. A 0x30 equals ASCII "0". A 0x49 translates to an ASCII "I". Figure 64 illustrates the convention for performing a block read.

OXAE IC_DEVICE_REV (BR)

The IC Device Revision is a block readable register that reports back the revision number of the silicon and the version of the silicon. The register is 3 bytes in length.

TABLE 4. 0xAE IC DEVICE REV REGISTER DEFINITION

BIT NUMBER	D[23:12]	D[11]	D[10:0]
Bit Name	N/A	Silicon Version	Silicon Revision
Default Value	0000 0011 0000	0	0000 0000 0010

SILICON VERSION D[11]

Data bit 11 of the IC Revision register reports the version of the silicon.

TABLE 5. D[11] SILICON VERSION BIT DEFINED

D4	STATUS
0	60V
1	12V

Global IC Controls

0X12 RESET DEFAULT ALL (S)

The Restore Default All register is a send byte command that restores all registers to the default state defined in <u>Table 1 on page 22</u>.

0X01 OPERATION (R/W)

The Operation register is a read/writable byte register that controls the overall power up state of the chip. Data Bit 7 of the register configures the power status of chip. The power status is define in <u>Table 6</u>. Yellow shading in the table is the default setting of the bit at power-up.

TABLE 6.	0x01 OPERATION	REGISTER BIT 7 DEFINED	
----------	----------------	-------------------------------	--

D7	STATUS
0	Power-down
1	Normal Operation

Primary and Auxiliary Channel Controls

0XD2 SET DPM MODE (R/W)

The Set DPM Mode is a read/writable byte register that controls the data acquisition behavior of the chip.

TARI F 7	0xD2 SET	DPM MODE	REGISTER	DEFINITION
	UNDZ GLI		NLGIGILN	

BIT NUMBER	D[7]	D6	D[5]	D[4]	D[3]	D[2:0]
Bit Name	N/A	ADC Enable	ADC State	Post Trigger State	ADC Mode Type	Operating Mode
Default Value	0	0	0	0	1	010

ADC ENABLE D[6]

Data bit 6 of the Set DPM Mode register controls the ADC power state within the DPM chip. At power-up, the ADC is powered up and is available to take data.

TABLE 8. 0xD2 SET DPM MODE REGISTER BIT 6 DEFINED

D6	ADC PD	
0	Normal Mode	
1	ADC Powered Down	

ADC STATE D[5]

Data bit 5 of the Set DPM Mode register controls the ADC state. The idle state of the ADC does not acquire data from any input of the DPM. Normal operating mode has the ADC acquiring data in a systematic way.

TABLE 9. 0xD2 SET DPM MODE REGISTER BIT 5 DEFINED

D5	ADC STATE
0	Normal State
1	ADC in Idle State

POST TRIGGER STATE D[4]

Data bit 4 of the Set DPM Mode register controls the post ADC state once an acquisition has been made in the trigger mode.

TABLE 10. 0xD2 SET DPM MODE REGISTER BIT 4 DEFINED

D4	ADC TRIGGER STATE		
0	Idle Mode after a Trigger Measurement		
1	PD Mode after Trigger Measurement		

ADC MODE TYPE D[3]

Data bit 3 of the Set DPM Mode register controls the behavior of the ADC to either triggered or continuous. The continuous mode has the ADC continuously acquiring dat in a systematic manor described by data bits [2:0] in the SET DPM MODE register. The triggered mode instructs the ADC to make an acquisition described by data bits [2:0]. The beginning of a triggered cycle starts once writing to the Set DPM Mode register commences. The trigger mode is useful for reading a single measurement per acquisition cycle.

TABLE 11. 0xD2 SET DPM MODE REGISTER BIT 3 DEFINED

D3	ADC MODE TYPE		
0	Trigger		
1	Continuous		

OPERATING MODE D[2:0]

The Operating Mode bits of the Set DPM Mode register control the state machine within the chip. The state machine globally controls the overall functionality of the chip. <u>Table 12</u> shows the various measurement states the chip can be configured to, as well as the mode bit definitions to achieve a desired measurement state. The shaded row is the default setting upon power-up.

TABLE 12. 0xD2 SET DPM MODE REGISTER BITS 2 TO 0 DEFINED

D[2:0]	MEASUREMENT INPUT				
0	Primary Channel Shunt Voltage				
1	Primary Channel V _{BUS} Voltage				
2	Primary Shunt and V _{BUS} Voltages				
3	Do Not Select				
4	Auxiliary Channel V _{BUS} Voltage				
5	Do Not Select				
6	Internal Temperature				
7	All				

0XD3 DPM CONVERSION STATUS (R)

The DPM conversion status register is a readable byte register that reports the status of a conversion when the DPM is programmed in the trigger mode.

TABLE 13. 0xD3 DPM CONVERSION STATUS REGISTER DEFINITION

BIT NUMBER	D[7:2]	D[1]	D[0]
Bit Name	N/A	CNVR	OVF
Default Value	0	0	0

CNVR: CONVERSION READY D[1]

The Conversion Ready bit indicates when the ADC has finished a conversion and has transferred the reading(s) to the appropriate register(s). The CNVR is only operable when the ADC state is set to trigger. The CNVR is in a high state when the conversion is in progress. When the CNVR bit transitions from a high state to a low state and remains at a low state is when the conversion is complete. The CNVR initializes or reinitializes when writing to the Set DPM Mode register.

OVF: MATH OVERFLOW FLAG D[0]

The Math Overflow Flag (OVF) bit is set to indicate the current and power data being read from the DPM is overranged and meaningless.

0XD4 CONFIGURE I_{CHANNEL} (R/W)

The Configure I_{CHANNEL} register is a read/writable word register that configures the ADC measurement acquisition settings for the primary and auxiliary voltage shunt inputs.

TABLE 14. 0xD4 CONFIGURE ICHANNEL	REGISTER DEFINITION
-----------------------------------	----------------------------

BIT NUMBER	D[15:7]	D[13:10]	D[9:7]	D[6:3]	D[2:0]
Bit Name	N/A	N/A	N/A	Prim Shunt Sample AVG	Prim Shunt Conversion Time
Default Value	00	00 00	11 1	000 0	111

SHUNT VOLTAGE CONVERSION TIME D[2:0]

The Shunt Voltage Conversion Time bits set the acquisition speed of the ADC when measuring the primary voltage shunt channel of the DPM. The primary voltage shunt channel has independent timing control bits allowing for the primary voltage shunt channel to have a unique acquisition time with the respect to other channels within the DPM. <u>Table 15</u> is a list of the selectable voltage shunt ADC time settings. The shaded row indicates the default setting.

Cont	fig_lchannel: D	CONVERSION TIME	
0	0	0	64µs
0	0	1	128µs
0	1	0	256µs
0	1	1	512µs
1	0	Х	1.024ms
1	1	х	2.048ms

SHUNT VOLTAGE SAMPLE AVERAGE D[6:3]

The Shunt Voltage Sample Average bits set the number of averaging samples for a unique sampling time. The DPM records all samples and outputs the average resultant to the voltage shunt register. <u>Table 16</u> defines the list of selectable averages the DPM can be set to. The shaded row indicates the default setting.

TABLE 16. PRIMARY V_{SHUNT} NUMBER OF SAMPLES TO AVERAGE DEFINED

	AVG[3:0]			CONVERTER AVERAGES
0	0	0	0	1
0	0	0	1	2
0	0	1	0	4
0	0	1	1	8
0	1	0	0	16
0	1	0	1	32
0	1	1	0	64
0	1	1	1	128
1	0	0	0	256
1	0	0	1	512
1	0	1	0	1024
1	0	1	1	2048
1	1	Х	х	4096

0X38 IOUT CALIBRATION GAIN (R/W)

The IOUT Calibration Gain register is a read/writable word register that is used to calculate current and power measurements for the primary channel of the DPM. When the register is programmed, the DPM calculates the current and power based on the primary channels V_{BUS} and V_{SHUNT} measurements. The calculation resultant is stored in the READ_IOUT and READ_POUT registers.

The calibration register value can be calculated as follows:

1. Calculate the full scale current range that is desired. This can be calculated using Equation 3.

Current _{FS} =
$$\frac{V_{shunt FS}}{R_{shunt}}$$
 (EQ. 3)

 $\rm R_{shunt}$ is the value of the shunt resistor. Vshunt_{FS} is the full scale range of the primary channel, which equals 80mV.

2. From the current full scale range, the current LSB can be calculated using Equation 4. Current full scale is the outcome from Equation 3.

$$Current_{LSB} = \frac{Current_{FS}}{ADC_{res}}$$
(EQ. 4)

 ADC_{res} is the resolution of shunt voltage reading. The output of the ADC is a signed 15 bit binary number. Therefore, the ADC_{res} value equals 2^{15} or 32768.

From Equation 4, the calibration resistor value can be calculated using Equation 5. The resolution of the math that is processed internally in the DPM is 2048 or 11 bits of resolution. The V_{SHUNT} LSB is set to 2.5μ V. Equation 5 yields a 15-bit binary number that can be written to the calibration register. The calibration register format is represented in Table 17.

$$CalReg_{val} = integer\left[\frac{Math_{res} \cdot Vshunt_{LSB}}{(Current_{LSB} \cdot R_{shunt})}\right]$$
$$CalReg_{val} = integer\left[\frac{0.00512}{(Current_{LSB} \cdot R_{shunt})}\right]$$
(EQ. 5)

TABLE 17. 0x38 IOUT_CAL_GAIN DEFINITION

BIT NUMBER	D[15]	D[14:0]
Bit Name	N/A	IOUT_CAL_GAIN
Default Value	0	000 0000 0000 0000

0XD5 CONFIGURE V_{CHANNEL} (R/W)

The Configure $V_{CHANNEL}$ register is a read/writable word register that configures the ADC measurement acquisition settings for the primary and auxiliary voltage bus inputs.

IADLE 10.	0xD5 CONFIGURE V _{CHANNEL} REGIST	ER DEFINITION

BIT NUMBER	D[15:14]	D[13:10]	D[9:7]	D[6:3]	D[2:0]
Bit Name	N/A	AuxV Sample AVG	AuxV Conversion Time	V _{BUS} Sample AVG	V _{BUS} Conversion Time
Default Value	00	00 00	11 1	000 0	111

The ADC configuration of the sampling average and conversion time settings for V_{BUS} and AuxV channels have the same setting choices as the V_{SHUNT} primary and auxiliary channels.

0XD7 CONFIGURE PEAK DETECTOR (R/W)

The Configure Peak Detector register is a read/writable byte register that toggles the minimum and maximum current tracking feature. A Peak Detect Enable bit setting of 1 enables the current peak detect feature of the DPM. The feature is discussed in more detail in the <u>"OxD8: Read Peak Min IOUT (R)</u>" section.

TABLE 19. 0xD7 CONFIGURE PEAK DETECTOR REGISTER DEFINITION

BIT NUMBER	D[7:1]	D[0]
Bit Name	N/A	Peak Detect En
Default Value	0000 000	0

Measurement Registers

0XD6 READ V_{SHUNT} OUT (R)

The Read V_{SHUNT} Out register is a readable word register that stores the signed measured digital value of the primary V_{SHUNT} input of the DPM. Using <u>Equation 2</u> to calculate the integer value of the register, <u>Equation 6</u> calculates the floating point measured value for the primary V_{SHUNT} channel.

$$V_{SHUNT} = Register_{value} \cdot V_{SHUNT(LSB)}$$
 (EQ. 6)

 $V_{SHUNT(LSB)}$ is the numerical weight of each level for the V_{SHUNT} channel, which equals $2.5 \mu V.$

0X8B READ V_{OUT} (R)

The Read V_{OUT} register is a readable word register that stores the unsigned measured digital value of the primary V_{BUS} input of the DPM. Using <u>Equation 1</u> to calculate the integer value of the register, <u>Equation 7</u> calculates the floating point measured value for the primary V_{BUS} channel.

$$V_{BUS} = Register_{value} \cdot V_{BUS(LSB)}$$
(EQ. 7)

 $V_{BUS(LSB)}$ is the numerical weight of each level for the V_{BUS} channel. The $V_{BUS(LSB)}$ equals 1mV for the 60V version of the DPM and 250 μ V for the 12V version of the DPM.

0X8C READ IOUT (R)

The Read I_{OUT} register is a readable word register that stores the signed measured digital value of the current passing through the primary channel's shunt. The register uses the measured value from V_{SHUNT} and the IOUT_CAL_GAIN register. Equation 8 yields the current for the primary channel.

$$Current = Register_{value} \cdot Current_{LSB}$$
(EQ. 8)

The Register_{value} is calculated using Equation 2. The Current_LSB is calculated using Equation 4.

0XD8: READ PEAK MIN IOUT (R)

0XD9 READ PEAK MAX IOUT (R)

000	🚹 Ipeak Detect		
Current Peak Det	tect Site: 0		
Current Readings	Curr	rent Readings	
✓ Enable Current Peak	Detect Max:	8.484	mА
	Current:	8.411	mA
(Clear Readings)	Min:	7.874	mA

FIGURE 65. THE ISL28025 TRACKS MINIMUM AND MAXIMUM AVERAGE CURRENT READINGS

The Read Peak Min/Max I_{OUT} registers are readable word registers that store the minimum and maximum current value of an averaging cycle for the current passing through the primary shunt.

The min/max current tracking is enabled by setting the Peak Detect Enable bit in the CONFIG_PEAK_DET (0xD7) register. The current peak detect feature only works for the current register.

At the conclusion of each primary channel current, the DPM will record and store the minimum and maximum values of the current measured. The feature operates for both the trigger and continuous modes. Disabling the Peak Detector Enable bit will turn off the feature as well as clear the Read Peak Min/Max I_{OUT} registers.

0X96 READ POUT (R)

The Read P_{OUT} register is a signed readable word register that reports the digital value of the power from the primary channel. The register uses the values from READ_IOUT and READ_VSHUNT_OUT registers to calculate the power.

The units for the power register are in watts. The power can be calculated using Equation 9.

$$Power = Register_{value} \cdot Power_{LSB} \cdot 40000$$
(EQ. 9)

The Register_{value} is calculated using <u>Equation 2 on page 24</u>. The Power_{LSB} can be calculated from <u>Equation 10</u>.

$$Power_{LSB} = Current_{LSB} \cdot V_{BUS(LSB)}$$
(EQ. 10)

The V_{BUS(LSB)} equals 1mV for the 60V version of the DPM and 250 μ V for the 12V version of the DPM. The Current_{LSB} is the value yielded from Equation 4.

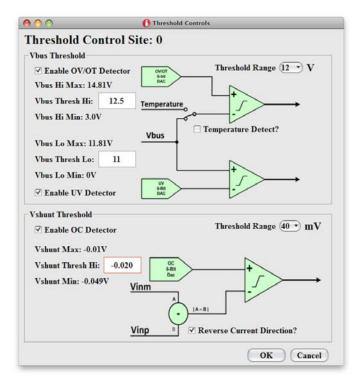
0XE1 READ VOUT AUX (R)

The Read Vout Aux register is a readable word register that stores the unsigned measured digital value of the auxiliary V_{BUS} input of the DPM. Using Equation 1 on page 24 to calculate the integer value of the register, Equation 11 calculates the floating point measured value for the auxiliary V_{BUS} channel.

$$V_{BUS} = \text{Register}_{value} \cdot V_{BUS(LSB)}$$
 (EQ. 11)

 $V_{BUS(LSB)}$ is the numerical weight of each level for the auxiliary V_{BUS} channel. The auxiliary $V_{BUS(LSB)}$ equals 100 μ V. The voltage range for the auxiliary V_{BUS} is 0 to VCC.

0X8D READ TEMPERATURE (R)


The read temperature register is a readable word register that reports out the internal temperature of the chip. The register is a 16-bit signed register. Bit 15 of the register is the signed bit. The register value can be calculated using Equation 12.

Register
$$_{\text{Value}} = \left[\sum_{n=0}^{14} \left(\text{Bit}_{val_{n}} \cdot 2^{n}\right)\right] - \left(\text{Bit}_{val_{15}} \cdot 2^{15}\right)$$
(EQ. 12)

n is the bit position within the register value. Bit_Val is the value of the bit either 1 or 0. The register value multiplied by 0.016 yields the internal temperature reading in Centigrade (°C).

Threshold Detectors

The DPM has three integrated comparators that allow for real time fault detection of overvoltage, undervoltage for the primary V_{BUS} input and an overcurrent detection for the primary V_{SHUNT} input. An over-temperature detection is available by multiplexing the input to the overvoltage comparator.

FIGURE 66. SIMPLIFIED BLOCK DIAGRAM OF THE THRESHOLD FUNCTIONS WITHIN THE DPM

0XDA VOUT OV THRESHOLD SET (R/W)

The VOUT OV Threshold Set register is a read/writable word register that controls the threshold voltage level to the overvoltage comparator. The description of the functionality within this register is found in Table 20.

The compared reference voltage level to the OV comparator is generated from a 6-bit DAC. The 6-bit DAC has 4 or 6 voltage

ranges to improve detection voltage resolution for a specific voltage range

TABLE 20	OxDA VOUT	OV THRESHOLD SET REGISTER DEFINITION
----------	-----------	---

BIT NUMBER	D[15:10]	D[9]	D[8:6]	D[5:0]
Bit Name	N/A	OV_OT SEL	Vbus_Thres_Rng	Vbus_OV_OT_Set
Default Value	0000 00	0	0 00	11 1111

OV_OT_SEL D[9]

The OV_OT_SEL bit configures the multiplexer to the input of the OV comparator to either compare for over-temperature or overvoltage. Setting the OV_OT_SEL to a 1 configures the OV comparator to detect for an over-temperature condition.

VBUS_THRES_RNG D[8:6]

The Vbus_Thres_Rng bits sets the threshold voltage range for the overvoltage and undervoltage DACs. There are 6 selectable ranges for the 60V version of the DPM. Only 4 selectable ranges for the 12V version of the DPM. Table 21 defines the range settings for the V_{BUS} threshold detector. The yellow shaded row denotes the default setting.

The temperature threshold reference level has one range setting which equals +125 $^\circ\text{C}$ at full scale.

Vbus	Vbus_Thres_Rng: D[8:6]			Vbus_60V (RANGE)
0	0	0	12	48
0	0	1	6	24
0	1	0	3	12
0	1	1	1.25	5
1	0	0	х	3.3
1	0	1	х	2.5

TABLE 21. Vbus_Thres_Rng BITS DEFINED

VBUS_OV_OT_SET D[5:0]

The Vbus_OV_OT_Set bits controls the voltage/temperature level to the input of the OV comparator. The LSB of the DAC is 1.56% of the full scale range chosen using the Vbus_Thres_Rng bits. For the temperature feature, the LSB for the temperature level is 5.71°C. The mathematical range is -144°C to +221.4.°C

The overvoltage range starts at 25% of the full scale range chosen using the Vbus_Thres_Rng bits and ends at 125% of the chosen full scale range. The same range applies to the temperature measurements.

Vbus_OV_OT_Set: D[5:0]	OV THRESHOLD VALUE	OT THRESHOLD VALUE
00 0000	25% of FS	-144
00 0001	(25 + 1.56)% of FS	-138.3
00 0010	(25 + 3.12)% of FS	-132.6
11 1101	(125 to 4.68)% of FS	210
11 1110	(125 to 3.12)% of FS	215.7
11 1111	(125 to 1.56)% of FS	221.4

TABLE 22. Vbus_OV_OT_Set BITS DEFINED

<u>Table 22</u> defines an abbreviated breakdown to set the OV/OT comparator level. The shaded row is the default condition.

0XDB VOUT UV THRESHOLD SET (R/W)

The V_{OUT} UV Threshold Set register is a read/writable byte register that controls the threshold voltage level to the undervoltage comparator. The description of the functionality within this register is found in Table 23.

The compared reference voltage level to the UV comparator is generated from a 6-bit DAC. The 6-bit DAC has 4 to 6 voltage ranges that are determined by the Vbus_Thres_Rng bits in the Vout OV Threshold Set register.

TABLE 23. 0xDB VOUT UV THRESHOLD SET REGISTER DEFINITION

BIT NUMBER	D[7:6]	D[5:0]
Bit Name	N/A	Vbus_UV_Set
Default Value	00	00 0000

VBUS_UV_SET D[4:0]

The Vbus_UV_Set bits control the undervoltage level to the input of the UV comparator. The LSB of the DAC is 1.56% of the full scale range chosen using the Vbus_Thres_Rng bits.

The undervoltage ranges from 0% to 100% of the full scale range set by the Vbus_Thres_Rng bits.

TABLE 24. Vbus_UV_Set BITS DEFINED

Vbus_UV_Set: D[5:0]	UV THRESHOLD VALUE
00 0000	0%
00 0001	1.56% of FS
00 0010	3.12% of FS
11 1101	(100 to 4.68)% of FS
11 1110	(100 to 3.12)% of FS
11 1111	(100 to 1.56)% of FS

<u>Table 24</u> defines an abbreviated breakdown to set the undervoltage comparator levels. The shaded row is the default condition.

OXDC IOUT OC THRESHOLD SET (R/W)

The I_{OUT} OC Threshold Set register is a read/writable word register that controls the threshold current level to the overcurrent comparator. The description of the functionality within this register is found in <u>Table 25</u>.

TABLE 25. 0xDC IOUT OC THRESHOLD SET REGISTER DEFINITION

BIT NUMBER	D[15:10]	D[9]	D[8:7]	D[6]	D[5:0]
Bit Name	N/A	lout_Dir	N/A	Vshunt Thres Rng	Vshunt_OC_Set
Default Value	0000 00	0	00	0	11 1111

The overcurrent threshold is defined through the V_{SHUNT} reading. The product of the current through the shunt resistor defines the V_{SHUNT} voltage to the DPM. The current through the shunt resistor is directly proportional the V_{SHUNT} voltage measured by the DPM. An overvoltage threshold for V_{SHUNT} is the same as an overcurrent threshold.

IOUT_ DIR D[9]

The lout_Dir bit controls the polarity of the V_{SHUNT} voltage threshold. The bit functionality allows an overcurrent threshold to be set for currents flowing from V_{INP} to V_{INM} and the reverse direction. Table 26 defines the range settings for the V_{BUS} threshold detector. The yellow shaded row denotes the default setting.

TABLE 26. Vbus_Thres_Rng BITS DEFINED

lout_Dir: D[9]	CURRENT DIRECTION
0	VINP to VINM
1	VINM to VINP

VSHUNT_THRES_RNG D[6]

The Vshunt_Thres_Rng bit sets the overvoltage threshold range for the overcurrent DAC. The selectable V_{SHUNT} range improves the overvoltage threshold resolution for lower full scale current applications. Table 27 defines the range settings for the V_{BUS} threshold detector. The yellow shaded row denotes the default setting.

TABLE 27. Vshunt_Thres_Rng BIT DEFINED

Vshunt_Thres_Rng: D[6]	V _{SHUNT} (RANGE)
0	80mV
1	40mV

VSHUNT_OC_SET D[5:0]

The Vshunt_OC_Set bits controls the V_{SHUNT} voltage level to the input of the OC comparator. The LSB of the DAC is 1.56% of the full scale range chosen using the Vshunt_Thres_Rng bits.

The overvoltage range starts at 25% of the full scale range chosen using Vbus_Thres_Rng bits and ends at 125% of the chosen full scale range.

TABLE 28. Vshunt_OC_Set BITS DEFINED

Vshunt_OC_Set: D[5:0]	OC THRESHOLD VALUE
00 0000	25% of FS
00 0001	(25 + 1.56)% of FS
00 0010	(25 + 3.12)% of FS
11 1101	(125 to 4.68)% of FS
11 1110	(125 to 3.12)% of FS
11 1111	(125 to 1.56)% of FS

SMB Alert

The DPM has two alert pins (SMBALERT1, SMBALERT2) to alert the peripheral circuitry that a failed event has occurred. SMBALERT1 output is an open drain allowing the user the flexibility to connect the alert pin to other components requiring different logic voltage levels than the DPM. The SMBALERT2 has a push/pull output stage for driving pins with logic voltage levels equal to the voltage applied to I2CVCC pin. The push/pull output is useful for driving peripheral components that require the DPM to source and sink a current. The alert pins are commonly connected to an interrupt pin of a microcontroller or an enable pin of a device.

The SMBALERT registers control the functionality of the SMBALERT pins. The threshold comparators are the inputs to the SMBALERT registers. The output are the SMBALERT pins. Figure 67 is a simple functional block diagram of the SMB Alert features.

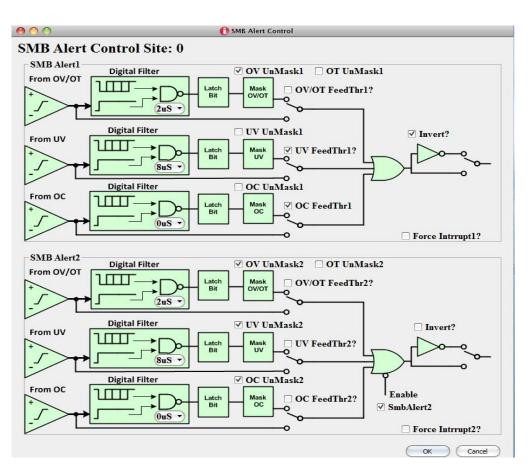


FIGURE 67. SIMPLIFIED BLOCK DIAGRAM OF THE SMBALERT FUNCTIONS WITHIN THE DPM

OXDD CONFIGURE INTERRUPTS (R/W)

The Configure Interrupt register is a read/writable word register that controls the behavior of the two SMBALERT pins. The definition of the control bits within the Configure Interrupt register is defined in <u>Table 29</u>.

BIT NUMBER	D [15]	D [14:12]	D [11:9]	D [8:7]	D [6:5]	D [4:3]	D [2]	D [1]	D [0]
Bit Name	N/A	ALERT2 FeedTh	ALERT1 FeedTh	OC FIL	OV FIL	UV FIL	OC EN	OV EN	UV EN
Default Value	0	000	000	00	00	00	0	0	0

TABLE 29. 0xDD CONFIGURE INTERRUPT REGISTER DEFINITION

ALERT2_FEEDTHR D[14:12]

The Alert2_FeedThr bits determine whether the bit from each alert comparator is digitally conditioned or not. The alert comparators, digital filters and latching bits are the same for both SMBALERT channels. <u>Table 30</u> defines the functionality of the Alert2_FeedThr bits.

TABLE 30.	Alert2	FeedThr	BITS	DEFINED
	/uorus_	_1 00a 1111		

_	Alert2_FeedThr Bits D[14:12]		FUNCTIONALITY
D[14]	0	0	OV/OT Digitally Conditioned
		1	OV/OT Pass Through
D[13]	1	0	UV Digitally Conditioned
		1	UV Pass Through
D[13]	2	0	OC Digitally Conditioned
		1	OC Pass Through

ALERT1_FEEDTHR D[11:9]

The Alert1_FeedThr bits determine whether the bit from each alert comparator is digitally conditioned or not. The alert comparators, digital filters and latching bits are the same for both SMB alert channels. <u>Table 31</u> defines the functionality of the Alert1_FeedThr bits.

TABLE 31. Alert1_FeedThr BITS DEFINED	TABLE 31.	Alert1_	_FeedThr	BITS	DEFINED
---------------------------------------	-----------	---------	----------	------	---------

	Alert1_FeedThr Bits D[11:9]		FUNCTIONALITY
D[11]	0	0	OV/OT Digitally Conditioned
		1	OV/OT Pass Through
D[10]	1	0	UV Digitally Conditioned
		1	UV Pass Through
D[9]	2	0	OC Digitally Conditioned
		1	OC Pass Through

OC_FIL D[8:7]

The OC_FIL bits control the digital filter for the overcurrent circuitry. The digital filter will prevent short duration events from passing to the output pins. The filter is useful in preventing high frequency power glitches from triggering a shutdown event. The filter time delay ranges from Oµs to 8µs. An 8µs filter setting requires an error event to be at least 8µs in duration before passing the result to the SMBALERT pins. There is one OC digital filter for both SMBALERT pins. Configuring OC_FIL bits will change the OC digital filter setting for both SMBALERT pins. See Table 32 for the filter selections.

UV_FIL D[6:5]

The UV_FIL bits control the digital filter for the undervoltage circuitry. The digital filter will prevent short duration events from passing to the output pins. The filter is useful in preventing high frequency power glitches from triggering a shutdown event. The filter time delay ranges from Oµs to 8µs. An 8µs filter setting requires an error event to be at least 8µs in duration before passing the result to the SMBALERT pins. There is one UV digital filter for both SMBALERT pins. Configuring UV_FIL bits will change the UV digital filter setting for both SMBALERT pins. See Table 32 for the filter selections.

OV_FIL D[4:3]:

The OV_FIL bits control the digital filter for the overvoltage circuitry. The digital filter will prevent short duration events from passing to the output pins. The filter is useful in preventing high frequency power glitches from triggering a shutdown event. The filter time delay ranges from 0µs to 8µs. An 8µs filter setting requires an error event to be at least 8µs in duration before passing the result to the SMBAlert pins. There is one OV digital filter for both SMB alert pins. Configuring OV_FIL bits will change the OV digital filter setting for both SMB alert pins. See <u>Table 32</u> for the filter selections.

UV_F	IL D[8:7] IL D[6:5] IL D[4:3]	FILTER TIME (µs)
0	0	0
0	1	2
1	0	4
1	1	8

TABLE 32. DIGITAL GLITCH FILTER SETTINGS DEFINED

OC_EN D[2]

The OC_EN enable bit controls the power to the overcurrent DAC and comparator. Setting the bit to 1 enables the overcurrent circuitry.

OV_EN D[1]

The OV_EN enable bit controls the power to the overvoltage DAC and comparator. Setting the bit to 1 enables the overvoltage circuitry.

UV_EN D[0]

The UV_EN enable bit controls the power to the undervoltage DAC and comparator. Setting the bit to 1 enables the undervoltage circuitry.

0XDE FORCE FEED-THROUGH ALERT REGISTER (R/W)

The Force Feed-through Alert Register is a read/writable byte register that controls the polarity of the interrupt. The definition of the control bits within the Force Feed-through Alert register is defined in <u>Table 33</u>.

BIT NUMBER	D[7:4]	D[3]	D[2]	D[1]	D[0]
Bit Name	N/A	A2POL	A1POL	FORCE A2	FORCE A1
Default Value	0000	0	0	0	0

A2POL D[3], A2POL D[2]

The AxPOL bits control the polarity of an interrupt. A2POL bit defines the SMBALERT2 pin active interrupt state. A1POL bit defines the SMBALERT1 pin active interrupt state. Table 34 defines the functionality of the bit.

TABLE 34. AxPol BIT DEFINED

A2POL D[3], A1POL D[2]	INTERRUPT ACTIVE STATE
0	low
1	high

FORCEA2 D[1], FORCEA1 D[0]

The FORCEAx bits allow the user to force an interrupt by setting the bit. FORCEA2 bit controls the SMBALERT2 pin state. FORCEA1 bit controls the SMBALERT1 pin state. Table 35 defines the functionality of the bit.

TABLE 35. FORCEAX BIT DEFINED

FORCEA2 D[1], FORCEA1 D[0]	INTERRUPT STATUS
0	Normal
1	Interrupt Forced

0X03 CLEAR FAULTS (S)

The Clear Faults register is a send byte command that clears all faults pertaining to the status registers. Upon execution of the command, the status registers returns to the default state defined in Table 1 on page 22.

0X7A STATUS V_{OUT} (R/W)

The Status V_{OUT} register is a read/writable byte register that reports over and undervoltage warnings for the V_{BUS} input.

TABLE 36. 0x7A STATUS VOUT REGISTER DEFINITION

BIT NUMBER	D[7]	D[6]	D[5]	D[4:0]
Bit Name	N/A	Vout OV Warning	Vout UV Warning	N/A
Default Value	0	0	0	0 0000

V_{OUT} OV WARNING D[6]

The V_{OUT} OV Warning bit is set to 1 when an overvoltage fault occurs on the V_{BUS} input. The V_{BUS} overvoltage threshold is set from the V_{OUT} OV Threshold Set register. In the event of a V_{BUS} overvoltage condition, the V_{OUT} OV Warning is latched to 1. Writing a 1 to the V_{OUT} OV Warning bit will clear the warning resulting in a bit value equal to 0.

VOUT UV WARNING D[5]

The V_{OUT} UV Warning bit is set to 1 when an undervoltage fault occurs on the V_{BUS} input. The V_{BUS} undervoltage threshold is set from the V_{OUT} UV Threshold Set register. In the event of a V_{BUS} undervoltage condition, the V_{OUT} UV Warning is latched to 1. Writing a 1 to the V_{OUT} UV Warning bit will clear the warning resulting in a bit value equal to 0.

0X7B STATUS IOUT (R/W)

The Status I_{OUT} register is a read/writable byte register that reports an overcurrent warning for the $V_{\mbox{SHUNT}}$ input.

BIT NUMBER	D[7]	D[6]	D[5]	D[4:0]
Bit Name	N/A	N/A	Iout OC Warning	N/A
Default Value	0	0	0	0 0000

IOUT OC WARNING D[5]

The I_{OUT} OC Warning bit is set to 1 when an overcurrent fault occurs on the V_{SHUNT} input. The V_{SHUNT} overcurrent threshold is set from the I_{OUT} OC Threshold Set register. In the event of a V_{SHUNT} overcurrent condition, the I_{OUT} OC Warning is latched to 1. Writing a 1 to the I_{OUT} OC Warning bit will clear the warning resulting in a bit value equal to 0.

0X7D STATUS TEMPERATURE (R/W)

The Status Temperature register is a read/writable byte register that reports an over-temperature warning initiated from the internal temperature sensor.

TABLE 38. 0x7D STATUS TEMPERATURE REGISTER DEF
--

BIT NUMBER	D[7]	D[6]	D[5]	D[4:0]
Bit Name	N/A	OT Warning	N/A	N/A
Default Value	0	0	0	0 0000

OT WARNING D[6]

The OT Warning bit is set to 1 when an over-temperature fault occurs from the internal temperature sensor. The over-temperature threshold is set from the V_{OUT} OV Threshold Set register. In the event of an over-temperature condition, the OT Warning bit is latched to 1. Writing a 1 to the OT Warning bit will clear the warning resulting in a bit value equal to 0.

0X7E STATUS CML (R/W)

The Status CML register is a read/writable byte register that reports warnings and errors associated with communications, logic and memory.

TABLE 39.	0x7E STATUS CML R	REGISTER DEFINITION

BIT NUMBER	D[7]	D[6]	D[5]	D[4:2]	D[1]	D[0]
Bit Name	USCMD	USDATA	PECERR	N/A	COMERR	N/A
Default Value	0	0	0	0 00	0	0

USCMD D[7]

The USCMD bit is set to 1 when an unsupported command is received from the I^2C master. Reading from an undefined register is an example of an action that would set the USCMD bit. The USCMD bit is a latched bit. Writing a 1 to the USCMD bit clears the warning resulting in a bit value equal to 0.

USDATA D[6]

The USDATA bit is set to 1 when an unsupported data is received from the I^2C master. Writing a word to a byte register is an example of an action that would set the USDATA bit. The USDATA bit is a latched bit. Writing a 1 to the USDATA bit clears the warning resulting in a bit value equal to 0.

PECERR D[5]

The PECERR bit is set to 1 when a packet error check (PEC) event has occurred. Writing the wrong PEC to the DPM is an example of an action that would set the PECERR bit. The PECERR bit is a latched bit. Writing a 1 to the PECERR bit clears the warning resulting in a bit value equal to 0.

COMERR D[1]

The COMERR bit is set to 1 for communication errors that are not handled by the USCMD, USDATA and PECERR errors. Reading from a write only register is an example of an action that would set the COMERR bit. The COMERR bit is a latched bit. Writing a 1 to the COMERR bit clears the warning resulting in a bit value equal to 0.

0X78 STATUS BYTE(R/W)

The Status Byte register is a read/writable byte register that is a hierarchal register to the Status Temperature and Status CML registers. The Status Byte registers bits are set if an over-temperature or a CML error has occurred.

TABLE 40. 0x78 STATUS BYTE REGISTER DEFINITION

BIT NUMBER	D[7]	D[6:3]	D[2]	D[1]	D[0]
Bit Name	BUSY	N/A	Temperature	CML	N/A
Default Value	0	000 0	0	0	0

BUSY D[7]

The BUSY bit is set to 1 when the DPM is busy and unable to respond. The BUSY bit is a latched bit. Writing a 1 to the BUSY bit clears the warning resulting in a bit value equal to 0.

TEMPERATURE D[2]

The Temperature bit is set to 1 when an over-temperature fault occurs from the internal temperature sensor. This bit is the same action bit as the OT Warning bit in the Status Temperature register. The over-temperature threshold is set from the Vout OV Threshold Set register. In the event of an over-temperature condition, the Temperature bit is latched to 1. Writing a 1 to the Temperature bit will clear the warning resulting in a bit value equal to 0.

CML D[1]

The CML bit is set to 1 when any errors occur within the Status CML register. There are four Status CML error bits that can set the CML bit. The CML bit is a latched bit. Writing a 1 to the CML bit clears the warning resulting in a bit value equal to 0.

0X79 STATUS WORD (R/W)

The Status Word register is a read/writable word register that is a hierarchal register to the Status V_{OUT} , Status I_{OUT} and Status Byte registers. The Status Word registers bits are set when any errors previously described occur. The register generically reports all errors.

BIT NUMBER	D[15]	D[14]	D[13:8]	D[7:0]
Bit Name	Vout	lout	N/A	See Status Byte
Default Value	0	0	00 0000	0000 0000

V_{OUT} D[15]

The V_{OUT} bit is set to 1 when any errors occur within the Status V_{OUT} register. Whether either or both an undervoltage or overvoltage fault occurs, the V_{OUT} bit will be set. The V_{OUT} bit is a latched bit. Writing a 1 to the V_{OUT} bit clears the warning resulting in a bit value equal to 0.

I_{OUT} D[14]:

The I_{OUT} bit is set to 1 when an overcurrent fault occurs. This bit is the same action bit as the I_{OUT} OC Warning bit in the Status I_{OUT} register. In the event of an overcurrent condition, the I_{OUT} bit is latched to 1. Writing a 1 to the I_{OUT} bit will clear the warning resulting in a bit value equal to 0.

0X1B SMBALERT MASK (BR/BW)

0XDF SMBALERT2 MASK (BR/BW)

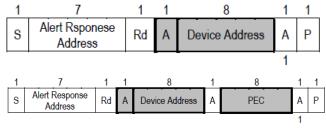
The SMBALERT registers are block read/writable registers that mask error conditions from electrically triggering the respective SMBALERT pin.

The SMBALERT can mask bits of any of the status registers. Masking lower level bits prevents the hierarchal bit from being set. For example, a COMERR bit being masked will not set the CML bit of the Status Byte register.

To mask a bit, the first data byte is the register address of the bit(s) to be masked. The second and third data bytes are the masking bits of the register. A masking bit of 1 prevents the signal from triggering an interrupt.

All alert bits are masked as the default state for both the SMB alert pins. The master needs to send instructions to unmask the alert bits.

As an example, a user would like to allow the COMERR bit to trigger a SMBALERT2 interrupt while masking the rest of the alerts within the Status CML register. The command that is sent from the master to the DPM is the slave address, SMBALERT2 register address, Status CML register address and the mask bit value. In a hexadecimal format, the data sent to the DPM is as follows; 0x80 DF 7E FD.


To read the mask status of any alert register, a four byte write command, without PEC, consisting of the slave address of the device, the SMB mask register address, the number of bytes to be read back and the register address of the mask to be read. Once the write command has commenced, a read command consisting of the device slave address and the register address of the SMB mask will return the mask of the desired alert register.

As an example, a user would like to read the status of the Status Byte register. The first command sent to the DPM is in hexadecimal bytes is 0x82 1B 01 78. The second command is a standard read. The slave address is 0x83 (0x82 + read bit set) and the register address is 0x1B.

SMBALERT1 RESPONSE ADDRESS

It is common that the SMBALERT1 pin of each ISL28025 device is shared to a single GPIO pin of the microcontroller. The SMBALERT1 pin is an open drain allowing for multiple devices to be OR'ed to a single GPIO pin.

The SMBALERT1 Response Address command reports the slave address of the device that has triggered alert. The SMB Respond Address command is shown in Figure 68.

The alert response address is 0x18. In the event of multiple alerts pulling down the GPIO line, the alert respond command will return the lowest slave address that is connected to the I^2C bus. Upon clearing the lowest slave address alert, the alert command will return the lowest slave address of the remaining alerts that are activated.

The alert response is operable when the interrupt active state is forced low by the device at the SMBALERT1 pin. Changing SMBALERT1 interrupt polarity or forcing an interrupt will enable the alert response. By design the open drain of the SMBALERT1 pin allows for ANDing of the interrupt via a pull-up resistor. The alert response command is valid for only the SMBALERT1 pin. The alert response command will return a 0x19 when there are no errors detected.

External Clock Control

The DPM has an external clock feature that allows the chip to be synchronized to an external clock. The feature is useful in limiting the number of clocks running asynchronously within a system.

0XE5 CONFIGURE EXTERNAL CLOCK (R/W)

The Configure External Clock register is a read/writable byte register that controls the functionality of the external clock feature.

TABLE 42.	0xE5 CONFIGURE EXTERNAL CLOCK REGISTER DEFINITION

BIT NUMBER	D[7]	D[6]	D[5:4}	D[3:0]
Bit Name	ExtCLK_EN	SMBLALERT20EN	N/A	EXTCIKDIV
Default Value	0	0	00	0000

EXTCLK_EN D[7]

The ExtClk_EN bit enables the external clock feature. The ExtClk_En default bit setting is 0 or disabled. A bit setting of 1 disables the internal oscillator of the DPM and connects circuitry such that the system clock is routed from the external clock pin.

SMBALERT2_OEN D[6]

The SMBALERT2_OEN bit within the Configure External Clock register either enables or disables the buffer that drives the SMBALERT2 pin.

TABLE 43. SMBALERT2_OEN BIT DEFINED

SMBALERT_OEN	SMBALERT2 STATUS	
0	Disabled	
1	Enabled	

EXTCLKDIV D[3:0]

The EXTCLKDIV bits control an internal clock divider that is useful for fast system clocks. The internal clock frequency from pin to chip is represented in Equation 13.

$$freq_{internal} = \frac{f_{EXTCLK}}{(ClkDiv 8) + 8}$$
 (EQ. 13)

F_{EXTCLK} is the frequency of the signal driven to the External Clock pin. ClkDiv is the decimal value of the clock divide bits.

SMBus/I²C Serial Interface

The ISL28025 supports a bidirectional bus oriented protocol. The protocol defines any device that sends data onto the bus as a transmitter and the receiving device as the receiver. The device controlling the transfer is the master and the device being controlled is the slave. The master always initiates data transfers and provides the clock for both transmit and receive operations. Therefore, the ISL28025 operates as a slave device in all applications.

The ISL28025 uses two bytes data transfer, all reads and writes are required to use two data bytes. All communication over the I^2C interface is conducted by sending the MSByte of each byte of data first, followed by the LSByte.

Protocol Conventions

For normal operation, data states on the SDA line can change only during SCL LOW periods. SDA state changes during SCL HIGH are reserved for indicating START and STOP conditions (see Figure 69). On power-up, the SDA pin is in the input mode.

All I²C interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDA while SCL is HIGH. The device continuously monitors the SDA and SCL lines for the START condition and does not respond to any command until this condition is met (see <u>Figure 69</u>). A START condition is ignored during the power-up sequence.

All I²C interface operations must be terminated by a STOP condition, which is a LOW-to-HIGH transition of SDA while SCL is HIGH (see Figure 69). A STOP condition at the end of a read operation or at the end of a write operation places the device in its standby mode.

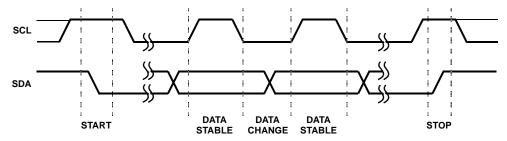


FIGURE 69. VALID DATA CHANGES, START AND STOP CONDITIONS

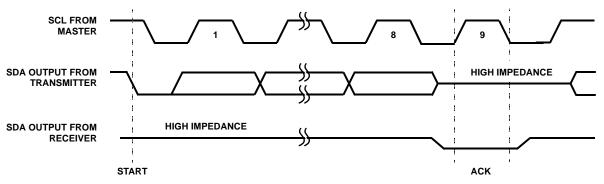


FIGURE 70. ACKNOWLEDGE RESPONSE FROM RECEIVER

SMBus, PMBus Support

The ISL28025 supports SMBus and PMBus protocol, which is a subset of the global I^2C protocol. SMBCLK and SMBDAT have the same pin functionality as the SCL and SDA pins, respectively. The SMBus operates at 100kHz. The PMBus protocol standardizes the functionality of each register by address.

Device Addressing

Following a start condition, the master must output a slave address byte. The 7 MSBs are the device identifiers. The A0, A1 and A2 pins control the bus address. These bits are shown in <u>Table 44</u>, there are 55 possible combinations depending on the A0, A1 and A2 connections.

A2	A1	AO	SLAVE ADDRESS
GND	GND	GND	1000 000
GND	GND	I2CVCC	1000 001
GND	GND	SDA	1000 010
GND	GND	SCL	1000 011
GND	I2CVCC	GND	1000 100
GND	I2CVCC	I2CVCC	1000 101
GND	I2CVCC	SDA	1000 110
GND	I2CVCC	SCL	1000 111
GND	SDA	GND	1001 000
GND	SDA	I2CVCC	1001 001
GND	SDA	SDA	1001 010
GND	SDA	SCL	1001 011
GND	SCL	GND	1001 100
GND	SCL	I2CVCC	1001 101
GND	SCL	SDA	1001 110
GND	SCL	SCL	1001 111
I2CVCC	GND	GND	1010 000
I2CVCC	SCL	SCL	1011 111
SDA	GND	GND	1100 000
SDA	GND	VCC	Do Not Use. Reserved
SDA	SCL	SCL	1101 111
SCL	GND	GND	1110 000
SCL	SDA	Х	Do Not Use. Reserved
SCL	SCL	Х	Do Not Use. Reserved

TABLE 44. I²C SLAVE ADDRESSES

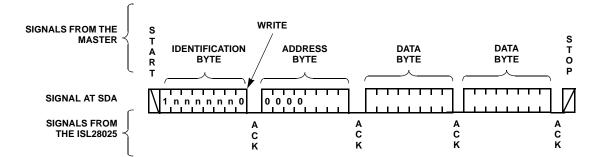


FIGURE 71. BYTE WRITE SEQUENCE (SLAVE ADDRESS INDICATED BY nnnn)

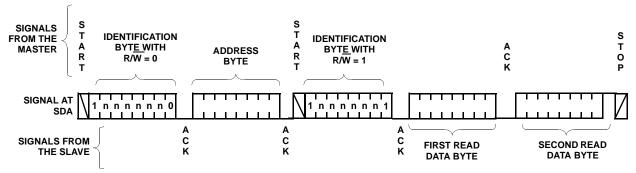


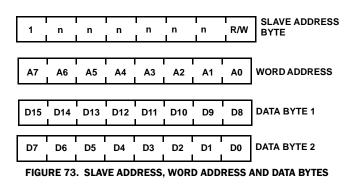
FIGURE 72. READ SEQUENCE (SLAVE ADDRESS SHOWN AS nnnn)

The last bit of the slave address byte defines a read or write operation to be performed. When this R/\overline{W} bit is a "1", a read operation is selected. A "0" selects a write operation (refer to Figure 71).

After loading the entire slave address byte from the SDA bus, the device compares with the internal slave address. Upon a correct compare, the device outputs an acknowledge on the SDA line.

Following the slave byte is a one byte word address. The word address is either supplied by the master device or obtained from an internal counter. On power-up, the internal address counter is set to address 00h, so a current address read starts at address 00h. When required, as part of a random read, the master must supply the one word address bytes, as shown in Figure 72.

In a random read operation, the slave byte in the "dummy write" portion must match the slave byte in the "read" section. For a random read of the registers, the slave byte must be "1nnnnnx" in both places.


Write Operation

A write operation requires a START condition, followed by a valid identification byte, a valid Address byte, two data bytes, and a STOP condition. The first data byte contains the MSB of the data, the second contains the LSB. After each of the four bytes, the device responds with an ACK. At this time, the I^2C interface enters a standby state.

Read Operation

A read operation consists of a three byte instruction, followed by two data bytes (see Figure 72). The master initiates the operation issuing the following sequence: A START, the identification byte with the R/\overline{W} bit set to "0", an address byte, a second START, and a second identification byte with the R/\overline{W} bit set to "1". After each of the three bytes, the ISL28025 responds with an ACK. Then the ISL28025 transmits two data bytes as long as the master responds with an ACK during the SCL cycle following the eighth bit of the first byte. The master terminates the read operation (issuing no ACK then a STOP condition) following the last bit of the second data byte (see Figure 72).

The data bytes are from the memory location indicated by an internal pointer. This pointer's initial value is determined by the address byte in the read operation instruction and increments by one during transmission of each pair of data bytes.

ISL28025

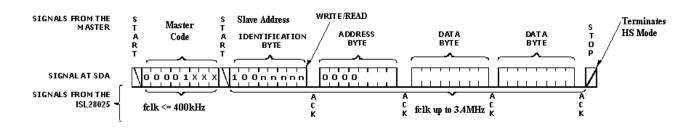


FIGURE 74. BYTE TRANSACTION SEQUENCE FOR INITIATING DATA RATES ABOVE 400Kbs

Group Command

The DPM has a feature that allows the master to configure the settings of all DPM chips at once. The configuration command for each device does not have to be same. Device 1 on an I^2C bus could be configured to set the voltage threshold of the OV comparator while device 2 is configured for the acquisition time of the V_{BUS} input. To achieve the scenario described without group command, the master sends two write commands, one to each slave device. Each command protocol concatenates the two commands but replaces the stop bit of the first command and the start bit of the second command with a repeat start bit. The actions sent in a Group Command format will execute once the stop bit has been sent. The stop bit signifies the end of a packet.

The broadcast feature saves time in configuring the DPM as well as measuring signal parameters in time synchronization. The broadcast should not be used for DPM read backs. This will cause all devices connected to the I^2C bus to talk to the master simultaneously.

SMBus/I²C Clock Speed

The device supports high-speed digital transactions up to 3.4Mbs. To access the high speed I²C feature, a master byte code of 0000 1xxx is attached to the beginning of a standard frequency read/write I^2C protocol. The x in the master byte signifies a do not care state. X can either equal a 0 or a 1. The master byte code should be clocked into the chip at frequencies equal or less than 400kHz. The master code command configures the internal filters of the ISL28025 to permit data bit frequencies greater than 400kHz. Once the master code has been clocked into the device, the protocol for a standard read/ write transaction is followed. The frequency at which the standard protocol is clocked in at can be as great as 3.4MHz. A stop bit at the end of a standard protocol will terminate the high speed transaction mode. Appending another standard protocol serial transaction to the data string without a stop bit, will resume the high speed digital transaction mode. Figure 74 illustrates the data sequence for the high speed mode. The minimum I²C supply voltage when operating at clock speeds 400kHz is 1.8V.

Signal Integrity

A filter stage should be considered to limit the effects of common mode signals from bleeding into the measurement made by the ADC. The filter attenuates the amplitude of the unwanted signal to the noise level of the ISL28025. Figure 75 is

a simple filter example to attenuate unwanted signals.

Measuring large currents require low value sense resistors. A large valued capacitor is required to filter low frequencies if the shunt capacitor, CSH is connected directly in parallel to the sense resistor, RSH. For more manageable capacitor values, it may be better to directly connect the shunt resistor across the shunt inputs of the ISL28025. The connection is illustrated in Figure 75. A single pole filter constructed of 2 resistors, R₁, and R_{SH} will improve capacitor value selections for low frequency filtering.

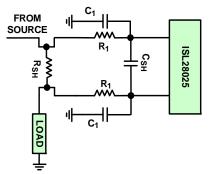


FIGURE 75. SIMPLIFIED FILTER DESIGN TO IMPROVE NOISE PERFORMANCE TO THE ISL28025

 R_1 and C_1 at both shunt inputs are single-ended low pass filters. The value of the series resistor to the ISL28025 can be a larger value than the shunt resistor, R_{SH} . A larger series resistor to the input allows for a lower cutoff frequency filter design to the ISL28025. The ISL28025 inputs can source up to $20\mu A$ of transient current in the measurement mode. The transient or switching offset current can be a large as $10\mu A$. The switching offset current combined with the series resistance, R_1 , creates an error offset voltage. A balance of the value of R_1 and the shunt measurement error should be achieved for this filter design.

The common mode voltage of the shunt input stage ranges from 0V to 60V. The capacitor voltage rating for C_1 and C_{SH} should comply with the nominal voltage being applied to the input.

Fast Transients

An small isolation resistor placed between ISL28025 inputs and the source is recommended. In hot swap or other fast transient events, the amplitude of a signal can exceed the recommended operating voltage of the part due to the line inductance. The isolation resistor creates a low pass filter between the device and the source. The value of the isolation resistor should not be too large. A large value isolation resistor can effect the measurement accuracy. The value of the isolation resistor combined with the offset current creates an offset voltage error at the shunt input. The input of the Bus channel is connected to the top of a precision resistor divider. The accuracy of the resistor divider determines the gain error of the Bus channel. The input resistance of the Bus channel is $600k\Omega$ Placing an isolation resistor of 10Ω will change the gain error of the Bus channel by 0.0016%.

External Clock

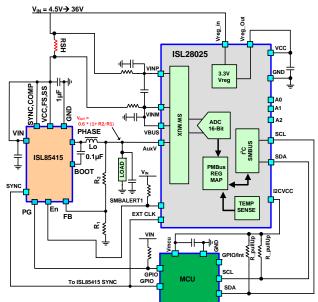


FIGURE 76. SIMPLIFIED SCHEMATIC OF THE ISL28025 SYNCHRONIZED TO A MCU SYSTEM CLOCK

An externally controlled clock allows measurements to be synchronized to an event that is time dependent. The event could be application generated, such as timing a current measurement to a charging capacitor in a switch regulator application or the event could be environmental. A voltage or current measurement may be suspectable to crosstalk from a controlled source. Instead of filtering the environmental noise from the measurement, another approach would be to synchronize the measurement to the source. The variability and accuracy of the measurement will improve.

The ISL28025 has the functionality to allow for synchronization to an external clock. The speed of the external clock combined with the choice of the internal chip frequency division value determines the acquisition times of the ADC. The internal system clock frequency is 500kHz. The internal system clock is also the ADC sampling clock. The acquisition times scale linearly from 500kHz. For example, an external clock frequency of 4.0MHz with a frequency divide setting of 0 (internal divide by 8) results in acquisition times that equals the internal oscillator frequency when enabled. The ADC modulator is optimized for frequencies of 500kHz. Operating internal clock frequencies beyond 500kHz may result in measurement accuracy errors due to the modulator not having enough time to settle.

Suppose an external clock frequency of 5.5MHz is applied with a divide by 88 internal frequency setting, the system clock speed is 62.5kHz or 8x slower than internal system clock. The acquisition times for this example will increase by 8. For a channel's conversion time setting of 2.048ms, the ISL28025 will have an acquisition time of 256µs.

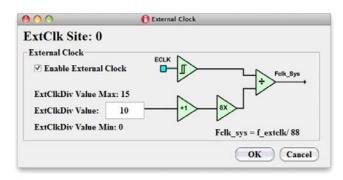


FIGURE 77. EXTERNAL CLOCK MODE

Figure 77 illustrates a simple mathematical diagram of the ECLK pin internal connection. The external clock divide is controlled by way of the EXTCLKDIV bit in register 0xE5.

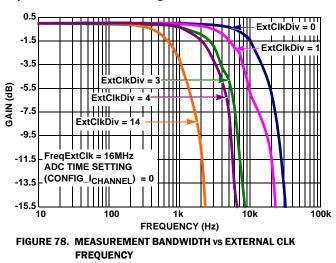
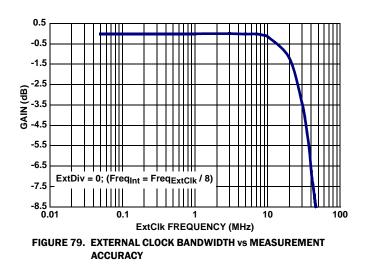



Figure 78 illustrates how changing the system clock frequency effects the measurement bandwidth (the ADC acquisition time).

The bandwidth of the external clock circuitry is 25MHz. Figure 79 shows the bandwidth of the external clock circuitry when the external clock division bits equals to 0.

The external clock pin can accept signal frequencies above 25MHz by programming the system clock frequency, such that the internal clock frequency is below 25MHz.

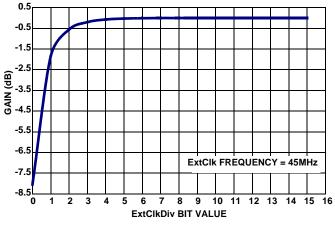


FIGURE 80. EXTERNAL CLOCK vs EXTERNAL BIT VALUE

Figure 80 illustrates the effects of dividing the external clock frequency on the V_{SHUNT} measurement accuracy.

<u>Figures 79</u> and <u>80</u> were generated by applying a DC voltage to the V_{SHUNT} input and measuring the signal by way of an ADC conversion.

Overranging

It is not recommended to operate the ISL28025 outside the set voltage range. In the event of measuring a shunt voltage beyond the maximum set range (80mV) and lower than the clamp voltage of the protection diode (1V), the measured output reading may be within the accepted range but will be incorrect.

Shunt Resistor Selection

In choosing a sense resistor, the following resistor parameters need to be considered; the resistor value, the resistor temperature coefficient and the resistor power rating.

The sense resistor value is a function of the full scale voltage drop across the shunt resistor and the maximum current

measured for the application. The maximum measurable range for the V_{SHUNT} input (V_{INP} - V_{INM}) of the ISL28025 is 80mV. The ISL28025 allows the user to define a unique range other than \pm 80mV.

Once the voltage range for the input is chosen and the maximum measurable current is known, the sense resistor value is calculated using Equation 14.

$$R_{sense} = \frac{V_{shunt_range}}{Imeas_{Max}}$$
 (EQ. 14)

In choosing a sense resistor, the sense resistor power rating should be taken into consideration. The physical size of a sense resistor is proportional to the power rating of the resistor. The maximum power rating for the measurement system is calculated as the V_{shunt_range} multiplied by the maximum measurable current expected. The power rating equation is represented in Equation 15.

$$P_{res_rating} = V_{shunt_range} \cdot Imeas_{Max}$$
 (EQ. 15)

A general rule of thumb is to multiply the power rating calculated in Equation 15 by 2. This allows the sense resistor to survive an event when the current passing through the shunt resistor is greater than the measurable maximum current. The higher the ratio between the power rating of the chosen sense resistor and the calculated power rating of the system (Equation 15), the less the resistor will heat up in high current applications.

The temperature coefficient (TC) of the sense resistor directly degrades the current measurement accuracy. The surrounding temperature of the sense resistor and the power dissipate by the resistor will cause the sense resistor value to change. The change in resistor temperature with respect to the amount of current that flows through the resistor is directly proportional to the ratio of the power rating of the resistor versus the power being dissipated. A change in sense resistor temperature results in a change in sense resistor value. Overall, the change in sense resistor value contributes to the measurement accuracy for the system. The change in a resistor value due to a temperature rise can be calculated using Equation 16

 $\Delta R_{\text{sense}} = R_{\text{sense}} \cdot R \text{sense} TC \cdot \Delta T \text{emperature}$ (EQ. 16)

 ${\rm \Delta} Temperature$ is the change in temperature in Celsius. Rsense_{TC} is the temperature coefficient rating for a sense resistor. R_{sense} is the resistance value of the sense resistor at the initial temperature.

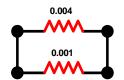

<u>Table 45</u> is a shunt resistor look-up table for select full scale current measurement ranges (Imeas_{Max}). The table also provides the minimum rating for each shunt resistor.

TABLE 45. SHUNT RESISTOR VALUES AND POWER RATINGS FOR SELECT MEASURABLE CURRENT RANGES

R _{SENSE} /PRATING	V _{SHUNT} RANGE (PGA SETTING)	
Imeas _{Max}	80mV	
100µA	800Ω/8μW	
1mA	80Ω/80μW	
10mA	8Ω/800μW	
100mA	800mΩ/8mW	
500mA	160mΩ/40mW	
1A	80mΩ/80mW	
5A	16mΩ/400mW	
10A	8mΩ/800mW	
50A	1.6mΩ/4W	
100A	0.8mΩ/8W	
500A	0.16mΩ/40W	

It is often hard to readily purchase shunt resistor values for a desired measurable current range. Either the value of the shunt resistor does not exist or the power rating of the shunt resistor is too low. A means of circumventing the problem is to use two or more shunt resistors in parallel to set the desired current measurement range. For example, an application requires a full scale current of 100A with a maximum voltage drop across the shunt resistor of 80mV. From Table 45, this requires a sense resistor of 0.8mΩ, 8W resistor. Assume the power ratings and the shunt resistor values to chose from are $1m\Omega/4W$, $2m\Omega/4W$ and $4m\Omega/4W$.

Let's use a $1m\Omega$ and a $4m\Omega$ resistor in parallel to create the shunt resistor value of $0.8m\Omega.$ Figure 81 shows an illustration of the shunt resistors in parallel.

FIGURE 81. SIMPLIFIED SCHEMATIC ILLUSTRATING THE USE OF TWO SHUNT RESISTORS TO CREATE A DESIRED SHUNT VALUE

The power to each shunt resistor should be calculated before calling a solution complete. The power to each shunt resistor is calculated using Equation 17.

$$P_{shuntRes} = \frac{V_{shunt_range}^2}{R_{sense}}$$
(EQ. 17)

The power dissipated by the $1m\Omega$ resistor is 6.4W. 1,6W is dissipated by the $4m\Omega$ resistor. 1.6W exceeds the rating limit of 1W for the $1m\Omega$ sense resistor. Another approach would be to use three shunt resistors in parallel as illustrated in Figure 82.

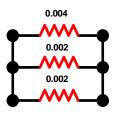


FIGURE 82. INCREASING THE NUMBER OF SHUNT RESISTORS IN PARALLEL TO CREATE A SHUNT RESISTOR VALUE REDUCES THE POWER DISSIPATED BY EACH SHUNT RESISTOR

Using Equation 17, the power dissipated to each shunt resistor yields 3.2W for the $2m\Omega$ shunt resistors and 1.6W for the $4m\Omega$ shunt resistor. All shunt resistor are within the specified power ratings.

Layout

The layout of a current measuring system is equally important as choosing the correct sense resistor and the correct analog converter. Poor layout techniques can result in severed traces, signal path oscillations, magnetic contamination, which all contribute to poor system performance.

TRACE WIDTH

Matching the current carrying density of a copper trace with the maximum current that will pass through is critical in the performance of the system. Neglecting the current carrying capability of a trace will result in a large temperature rise in the trace, and the loss in system efficiency due to the increase in resistance of the copper trace. In extreme cases, the copper trace could be severed because the trace could not pass the current. The current carrying capability of a trace is calculated using Equation 18.

Trace width =
$$\frac{\left(\frac{\text{Imax}}{k \cdot \Delta T^{0.44}}\right)^{0.725}}{\text{Trace Thickness}}$$
(EQ. 18)

I_{max} is the largest current expected to pass through the trace. ΔT is the allowable temperature rise in Celsius when the maximum current passes through the trace. Trace_{Thickness} is the thickness of the trace specified to the PCB fabricator in mils. A typical thickness for general current carrying applications (<100mA) is 0.5oz. copper or 0.7mils. For larger currents, the trace thickness should be greater than 1.0oz. or 1.4mils. A balance between thickness, width and cost needs to be achieved for each design. The coefficient k in Equation 15 changes depending on the trace location. For external traces, the value of k equals 0.048 while for internal traces the value of k reduces to 0.024. The k values and Equation 18 are stated per the ANSI IPC-2221(A) standards.

TRACE ROUTING

It is always advised to make the distance between voltage source, sense resistor and load as close as possible. The longer the trace length between components will result in voltage drops between components. The additional resistance will reduce the efficiency of a system.

The bulk resistance, ρ , of copper is $0.67\mu\Omega/in$ or $1.7\mu\Omega/cm$ at +25°C. The resistance of trace can be calculated from Equation 19.

$$R_{\text{trace}} = \rho \cdot \frac{\text{Trace}_{\text{length}}}{\text{Trace}_{\text{width}} \cdot \text{Trace}_{\text{thickness}}}$$
(EQ. 19)

Figure 83 illustrates each dimension of a trace.

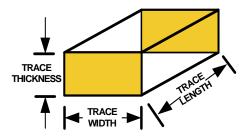


FIGURE 83. ILLUSTRATION OF THE TRACE DIMENSIONS OF A STRIP LINE TRACE

For example, assume a trace has 2oz. of copper or 2.8mil thickness, a width of 100mil and a length of 0.5in. Using Equation 19, the resistance of the trace is approximately $2m\Omega$. Assume 1A of current is passing through the trace. A 2mV voltage drop would result from trace routing.

Current flowing through a conductor will take the path of least resistance. When routing a trace, avoid orthogonal connections for current bearing traces.

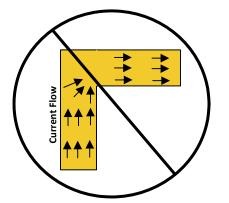


FIGURE 84. AVOID ROUTING ORTHOGONAL CONNECTIONS FOR TRACES THAT HAVE HIGH CURRENT FLOWS.

Orthogonal routing for high current flow traces will result in current crowding, localized heating of the trace and a change in trace resistance.

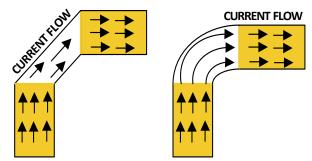


FIGURE 85. USE ARCS AND $45^{\,\rm o}$ TRACES TO SAFELY ROUTE TRACES WITH LARGE CURRENT FLOWS

The utilization of arcs and 45° traces in routing large current flow traces will maintain uniform current flow throughout the trace. Figure 85 illustrates the routing technique.

CONNECTING SENSE TRACES TO THE CURRENT SENSE RESISTOR

Ideally, a 4 terminal current sense resistor would be used as the sensing element. Four terminal sensor resistors can be hard to find in specific values and in sizes. Often a two terminal sense resistor is designed into the application.

Sense lines are high impedance by definition. The connection point of a high impedance line reflects the voltage at the intersection of a current bearing trace and a high impedance trace.

The high impedance trace should connect at the intersection where the sense resistor meets the landing pad on the PCB. The best place to make current sense line connection is on the inner side of the sense resistor footprint. The illustration of the connection is shown in Figure 86. Most of the current flow is at the outer edge of the footprint. The current ceases at the point the sense resistor connects to the landing pad. Assume the sense resistor connects at the middle of the each landing pad, this leaves the inner half of the each landing pad with little current flow. With little current flow, the inner half of each landing pad is classified as high impedance and perfect for a sense connection.

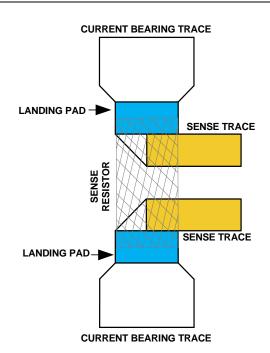


FIGURE 86. CONNECTING THE SENSE LINES TO A CURRENT SENSE RESISTOR

Current sense resistors are often smaller than the width of the traces that connect to the footprint. The trace connecting to the footprint is tapered at a 45° angle to control the uniformity of the current flow.

MAGNETIC INTERFERENCE

The magnetic field generated from a trace is directly proportional to the current passing through the trace and the distance from the trace the field is being measured at. Figure 87 illustrates the direction the magnetic field flows versus current flow.



FIGURE 87. THE CONDUCTOR ON THE LEFT SHOWS THE MAGNETIC FIELD FLOWING IN A CLOCKWISE DIRECTION FOR CURRENTS FLOWING INTO THE PAGE. CURRENT FLOW OUT OF THE PAGE HAS A COUNTER CLOCKWISE MAGNETIC FLOW

The equation in Figure 87 determines the magnetic field, B, the trace generates in relation to the current passing through the trace, I, and the distance the magnetic field is being measured from the conductor, r. The permeability of air, μ_0 , is $4\pi \times 10^{-7}$ H/m.

When routing high current traces, avoid routing high impedance traces in parallel with high current bearing traces. A means of limiting the magnetic interference from high current traces is to closely route the paths connected to and from the sense resistor. The magnetic fields will cancel outside the two traces and add between the two traces. Figure 88 illustrates a magnetic field insensitive layout.

If possible, do not cross traces with high current. If a trace crossing cannot be avoided, cross the trace in an orthogonal manor and the furthest layer from the current bearing trace. The inference from the current bearing trace will be limited.

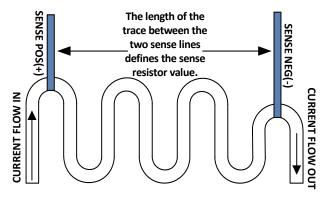


FIGURE 88. CLOSELY ROUTED TRACES THAT CONNECT TO THE SENSE RESISTOR REDUCES THE MAGNETIC INTERFERENCE SOURCED FROM THE CURRENT FLOWING THROUGH THE TRACES

A Trace as a Sense Resistor

In previous sections, the resistance and the current carrying capabilities of a trace were discussed. In high current sense applications, a design may utilize the resistivity of a current sense trace as the sense resistor. This section will discuss how to design a sense resistor from a copper trace.

Suppose an application needs to measure current up to 200A. The design requires the least amount of voltage drop for maximum efficiency. The full scale voltage range of 40mV is chosen. From Ohms law, the sense resistor is calculated to be $200\mu\Omega$. The power rating of the resistor is calculated to be 8W. Assume the PCB trace thickness of the board equals 20z./2.8mils and the maximum temperature rise of the trace is $+20^{\circ}$ C. Using Equation 18, the calculated trace width is 2.192in. The trace width, thickness and the desired sense resistor value is known. Utilizing Equation 19, the trace length is calculated to be 1.832in.

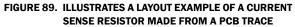


Figure 89 illustrates a layout example of a current sense resistor defined by a PCB trace. The serpentine pattern of the resistor reduces current crowding as well as limiting the magnetic interference caused by the current flowing through the trace.

For the example discussed, the width of the trace in Figure 89 illustration would equal 2.192in and the length between the sense lines equals 1.832in.

The width of the resistor is long for some applications. A means of shortening the trace width is to connect two traces in parallel. For calculation ease, assume the resistive traces are routed on the outside layers of a PCB. Using <u>Equations 18</u> and <u>19</u>, the width of the trace is reduced from 2.192in to 1.096in.

When using multiple layers to create a trace resistor, use multiple vias to keep the trace potentials between the two conductors the same. Vias are highly resistive compared to a copper trace. Multiple vias should be employed to lower the voltage drop due to current flowing through resistive vias. <u>Figure 90</u> illustrates a layout technique for a multiple layered trace sense resistor.

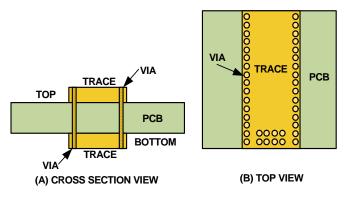


FIGURE 90. ILLUSTRATES A LAYOUT EXAMPLE OF A MULTIPLE LAYER TRACE RESISTOR

Lossless Current Sensing (DCR)

A DCR sense circuit is an alternative to a sense resistor. The DCR circuit utilizes the parasitic resistance of an inductor to measure the current to the load. A DCR circuit remotely measures the current through an inductor. The lack of components in series with the regulator to the load makes the circuit lossless.

FIGURE 91. SIMPLIFIED CIRCUIT EXAMPLE OF A DCR

A properly matched DCR circuit has an equivalent circuit seen by the ADC equals to R_{dcr} in <u>Figure 91</u>. Before deriving the transfer function between the inductor current and voltage seen by the ISL28025, let's review the definition of an inductor and capacitor in the Laplacian domain.

$$X_{c}(f) = \frac{1}{j \cdot \omega(f) \cdot C} \qquad X_{L}(f) = j \cdot \omega(f) \cdot L$$
(EQ. 20)

 X_c is the impedance of a capacitor related to the frequency and X_L is the impedance of an inductor related to frequency. ω equals to $2\pi f$. f is the chop frequency dictated by the regulator. Using Ohms law, the voltage across the DCR circuit in terms of the current flowing through the inductor is define in Equation 21.

$$V_{dcr}(f) = \left(R_{dcr} + j \cdot \omega(f) \cdot L\right) \cdot i_{L}$$
(EQ. 21)

In Equation 21, R_{dcr} is the parasitic resistance of the inductor. The voltage drop across the inductor (Lo) and the resistor (R_{dcr}) circuit is the same as the voltage drop across the resistor (R_{sen}) and the capacitor (C_{sen}) circuit. Equation 22 defines the voltage across the capacitor (V_{csen}) in terms of the inductor current (I_L).

$$V_{c}(f) = \frac{\left(j \cdot \omega(f) \cdot L + R_{dcr}\right)}{1 + j \cdot \omega(f) \cdot C_{sen'}R_{sen}} = R_{dcr} \left[\frac{\left[1 + \frac{\left(j \cdot \omega(f) \cdot L\right)}{R_{dcr}}\right]}{1 + j \cdot \omega(f) \cdot C_{sen'}R_{sen}}\right] \cdot i_{L}$$
(EQ. 22)

The relationship between the inductor load current (I_L) and the voltage across capacitor simplifies if the following component selection holds true;

$$\frac{L}{R_{dcr}} = C_{sen} \cdot R_{sen}$$
(EQ. 23)

If <u>Equation 23</u> holds true, the numerator and denominator of the fraction in <u>Equation 22</u> cancels reducing the voltage across the capacitor to the equation represented in <u>Equation 24</u>.

$$V_{c} = R_{dcr} \cdot i_{L}$$
(EQ. 24)

Most inductor datasheets will specify the average value of the R_{dcr} for the inductor. R_{dcr} values are usually sub $1m\Omega$ with a tolerance averaging 8%. Common chip capacitor tolerances average to 10%.

Inductors are constructed out of metal. Metal has a high temperature coefficient. The temperature drift of the inductor value could cause the DCR circuit to be untuned. An untuned circuit results in inaccurate current measurements along with a chop signal bleeding into the measurement. To counter the temperature variance, a temperature sensor may be incorporated into the design to track the change in component values.

A DCR circuit is good for gross current measurements. As discussed, inductors and capacitors have high tolerances and are temperature dependent, which will result in less than accurate current measurements.

In Figure 91, there is a resistor in series with the ISL28025 negative shunt terminal, VINM, with the value of $R_{sen} + R_{dcr.}$ The resistor's purpose is to counter the effects of the bias current from creating a voltage offset at the input of the ADC.

Typical Applications

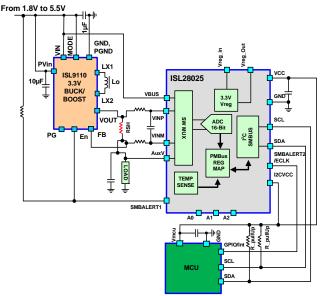


FIGURE 92. GENERIC POL CIRCUIT USING A BUCK/BOOST CONVERTER AND THE ISL28025

Generic Buck/Boost Regulator POL Circuit

The electronic industry is trending towards devices that are portable. The trend ranges in all aspects of the industry from tablets to medical equipment. Most portable devices use batteries to energize the circuitry.

Depending on the chemistry of the battery, the voltage of the battery will degrade with equipment use. The degradation of the battery voltage with each recharge cycle to the point where the battery cannot power the electronic circuitry.

Buck/boost regulators are used to extend the operating time in battery applications by bucking the battery voltage to the regulated voltage when the battery voltage is above the regulated voltage and boosting the battery voltage to the regulated voltage when the battery is below the regulated voltage. Utilizing a buck/boost regulator improves operation time of the equipment before needing a charge. The illustration in <u>Figure 92</u> is a simplified buck/boost monitoring circuit with alert features. The ISL9110 regulates voltages from 1.8V to 5.5V. The ISL9110 is capable of delivering 1.2A of current to a load.

The ISL9110 inductor selection should be consistent with the peak current delivered to the load. The ideal inductor value, Lo, is 2.2μ H for 1.2A of peak current. The DSR rating of the inductor should be as low as possible to maximize the efficiency of the converter.

The ISL28025 V_{BUS} input is tied to the battery voltage. The internal comparators of the ISL28025 can be configured to monitor the battery voltage for undervoltage and overvoltage conditions. If the battery is overcharged or about ready to die, the comparator can signal the microcontroller to perform an action. A sense resistor, RSH, is used to monitor the current delivered to the circuit load. The sense resistor is connected between the FB (feedback) and the VOUT pin of the ISL9110. The voltage is regulated at the FB pin. To enable the ISL28025 to measure current, the sense resistor can be digitized by the series of calculations described in the following:

Current FS =
$$\frac{V \text{shunt FS}}{R_{\text{shunt}}}$$
 (EQ. 25)

In Equation 25, R_{SHUNT} is equal to the shunt resistor, RSH, value. Vshunt_{FS} is the full scale voltage value of the shunt channel (V_{INP}, V_{INM}) . In most applications the value is equal to 80mV. For applications that require a full scale range less than 80mV, the defined value should be used as the Vshunt_{FS} value.

Utilizing the result of the Current_{FS} equation, the Current_{LSB} is calculated using Equation 26.

$$Current _{LSB} = \frac{Current _{FS}}{ADC_{res}}$$
(EQ. 26)

The ADCres variable is the resolution of the ADC in one sign direction. The ADCres equals 2^{15} or 32768.

The integer value from the resultant of <u>Equation 27</u> is the value programmed into the IOUT_CAL_GAIN, reg 0x38, register to enable current calculations.

$$CalReg_{val} = integer\left[\frac{0.00512}{(Current_{LSB} \cdot R_{shunt})}\right] = integer\left(\frac{167.77216}{Vshunt_{FS}}\right)$$
(EQ. 27)

The overcurrent, OC, comparator can be configured to trigger an alert for a user defined overcurrent condition. Any alert conditions from the V_{BUS} or V_{SHUNT} (V_{INP} and V_{INM}) inputs can trigger the SMBALERT pin causing the regulator to turn off.

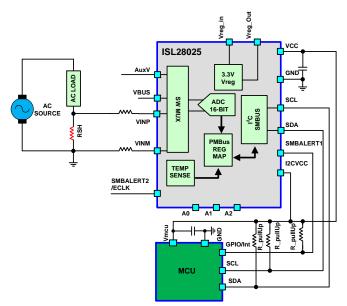


FIGURE 93. SIMPLIFIED CIRCUIT USING THE ISL28025 TO MEASURE AC CURRENTS

Using the ISL28025 to Measure AC Currents

There are many applications that utilize the use of alternating current (AC) signal sources to either control or activate a load. Motors and power distribution circuits are some examples of AC loads.

The ISL28025 is able to measure lower frequency signals. The ISL28025 can be programmed to uniquely configure the acquisition time of each input. The ADC acquisition time directly determines the measurable bandwidth of an input. Figure 94 is the bandwidth response of the ISL28025 vs ADC timing.

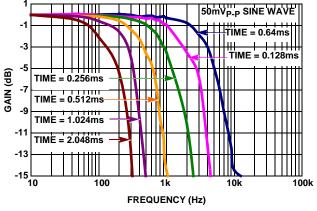


FIGURE 94. V_{SHUNT} BANDWIDTH VS ADC TIMING

The circuit in Figure 93 configures the ISL28025 V_{SHUNT} input (V_{INP}, V_{INM}) as a low side current sense. The primary inputs (V_{INP}, V_{INM} and V_{BUS}) of the ISL28025 are able to accept input voltages ranging from 0V to 60V. The primary V_{SHUNT} input has a measurable range of ±80mV. The low side current sensing architecture with the dynamic inputs of the ISL28025 allows for high voltage current measurements. Programming the digitized shunt resistor, RSH, value into the ISL28025 enables current measurements from the device.

The ISL28025 measures current accurately from a common mode of -30mV to 60V. The graph in Figure 95 illustrates the current measurement capabilities versus the common mode shunt voltage of the ISL28025.

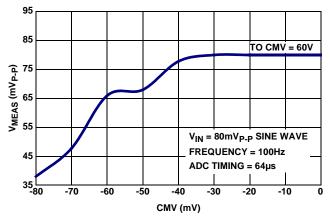


FIGURE 95. PRIMARY V_{SHUNT} AC COMMON MODE VOLTAGE RANGE

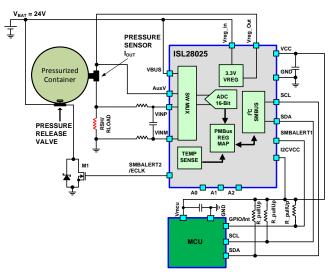


FIGURE 96. SIMPLIFIED SCHEMATIC OF A PRESSURE MONITOR WITH A SAFETY FEATURE

Using the ISL28025 as a Sensor Monitor

There are many applications that quantify the analog world. Applications range from safety to controlling a manufacturing process. The root of each application requires a sensor which translates the desired analog parameter to a fundamental electronic parameter of voltage, current, resistance or frequency.

Figure 96 is a simplified electronic circuit that translates pressure to a digital signal. Suppose a 24V battery is connected to the pressure monitor powering the electronic circuitry as well as the safety valve for the pressurized container. The ISL28025 has an integrated 3.3V voltage regulator that regulates input voltages between 4.5V to 60V. The voltage regulator can be used to power up the ISL28025 and some light powered peripheral circuitry. The voltage regulator powers the pressure sensor, the ISL28025 and the MCU. The pressure sensor in Figure 96 translates pressure into current. The ISL28025 uses V_{INP} and V_{INM} to monitor the current from the sensor. The ISL28025 has analog comparators that detects overvoltage, undervoltage and overcurrent conditions on the V_{BUS} and V_{SHUNT} (V_{INM} and V_{INP}) inputs. The response time of each comparator is approximately 0.5µs. The response of the comparator can be configured for glitch response, masking and alert polarity.

The pressure circuit is connected to the SMBALERT2, which is a push/pull output stage that has logic levels agreeable to the voltage applied to the I2CVCC pin. The SMBALERT2 pin controls a valve by way of a transistor. If the pressure in the chamber exceeds a threshold pressure, the ISL28025 will signal an alert to the SMBALERT2 pin, which energizes a pressure reliving valve resulting in the pressure in the container to reduce.

The V_{BUS} input is used to monitor the battery voltage and the AuxV input monitors the 3.3V voltage.

The ISL28025 is offered in a WLCSP16 package. The package is frugal on space and perhaps can be mounted on the back of the pressure sensor.

Real Time Power Monitor System for Real Time Operating Systems, RTOS

For many real time monitoring systems (RTOS), the use of real time power measurements for determining the efficiency of software to monitoring the security of the real time system (RTS).

The circuit in Figure 97 is a simplified circuit that uses two ISL28025s to measured real time power. The Group Command from the PMBus command set synchronizes both ISL28025s to the same acquisition starting time.

The Group Command is a concatenation of two or more instructions sent from the master. Each instruction is separated by a repeat start command. The execution of the instructions

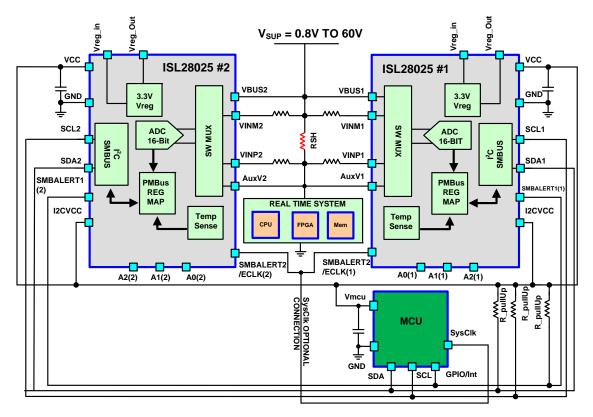


FIGURE 97. SIMPLIFIED EXAMPLE OF TWO ISL28025 CONFIGURED TO MEASURE REAL TIME TO A RTO SYSTEM

ISL28025

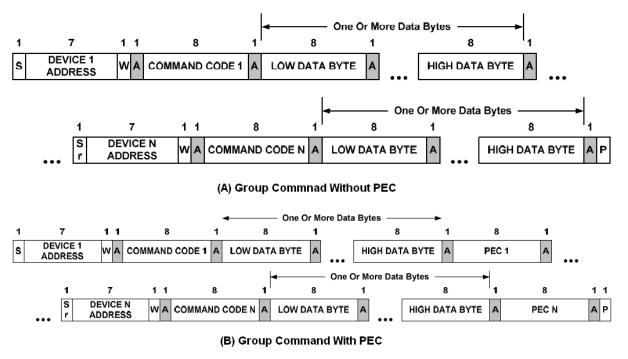
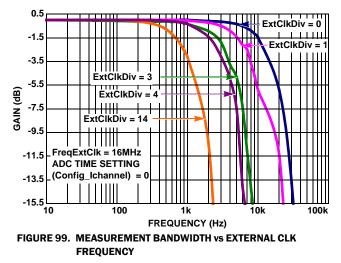



FIGURE 98. GROUP COMMAND (A) WITHOUT PEC (B) WITH PEC

All measurements between the two ISL28025 chips will remain synchronized as well as each ISL28025 system clock is matched or another Group Command is received. To guarantee synchronized acquisitions, the microcontroller can supply a system clock to each ISL28025 EXTCLK pin. The system clock will control the internal clock of each ISL28025. The acquisition times set by the Configure IChannel (Reg 0xD4) and Configure VChannel (Reg 0xD5) channels are based on an internal system clock of 500kHz. Apply an internal system clock either high or lower will adjust the acquisition times inversely to the ratio of the applied internal system clock frequency to the default system clock frequency of 500kHz. The effects of varying the system clock frequency is displayed in Figure 98.

To measure real time power, one of the ISL28025s should read current constantly while the other measures the voltage delivered to the RTS. The microcontroller (MCU) will read each

device individually and multiply the current and voltage values to yield the power consumption at the instant of time.

A SLOWER MEASUREMENT OF POWER

One ISL28025 can measure power but does so in a ping pong manner. The ISL28025 will measure voltage and then current followed by a calculation of power. Figure 100 illustrates a slower version of monitoring power to the RTS.

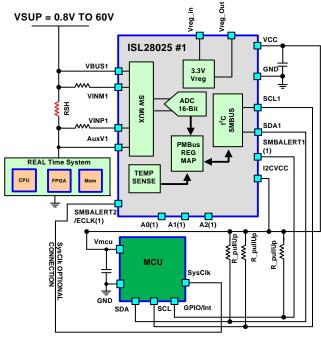


FIGURE 100. SIMPLIFIED CIRCUIT THAT MEASURES POWER DELIVERED TO THE RTO SYSTEM AT A SLOWER RATE

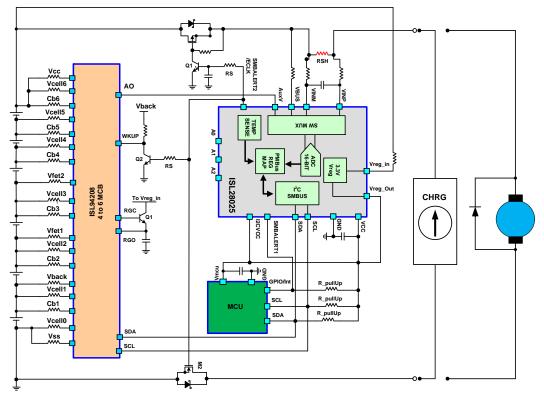


FIGURE 101. SIMPLIFIED CIRCUIT FOR MULTICELL BALANCING

An ISL28025 Used as a Control and Alert for a Multicell Balancing Circuit

Batteries are used in many applications such as electric vehicles, power tools, medical electronics, battery backup systems and other portable electronics. The development of battery technologies to utilize unique chemical offerings have improved the lifetime and the source current of a battery. The elements used to improve battery technology are not as plentiful as older technologies. The use of these elements increase a battery cost. Designs that utilize newer battery technologies require monitoring each battery cell as well as balancing the cells evenly. In balancing the cells, the overall battery life improves, the usage times improve and the health of the battery is always known.

Figure 101 is a simplified circuit for a 6-cell battery pack. The ISL94208 is ideal for Li-ion batteries. The ISL94208 is a multicell balancing controller that routes the battery voltage of each cell through a multiplexer to pin AO, where the voltage can be read. A0 is connected to the AUXV pin of the ISL28025.

The ISL28025 is powered by the battery pack through a 3.3V regulator. The input of the 3.3V regulator accepts input voltages from 4.5V to 60V. The voltage regulator is capable of powering some low powered circuitry along with the ISL28025.

The primary shunt input (V_{INP}, V_{INM}) operates in the presence of common mode voltages ranging from OV to 60V. The ISL28025 can calculate the current by digitizing the shunt resistor value, RSH. The V_{BUS} input is able to measure voltages up to 60V. The VBUS pin is connected to the top of the battery pack. The measurement node is known as the pack voltage.

SMBALERT2 is a push/pull output pin that drives a NMOS (M2) and a PMOS (M1) via a transistor (Q1). The ISL28025 has analog comparators that monitor the primary bus and shunt inputs for overvoltage, undervoltage and overcurrent conditions. In the event that a comparator is tripped, the SMBALERT2 can disconnect the charger circuit or load from the battery pack. The reaction time of the analog comparators are roughly 500ns. The SMBALERT pins active polarity and force state can be set through l^2C commands.

The Q1 transistor is connected to the RGO and RGC pins of the ISL94208 which activates the 3.3V regulator inside the ISL94208. The Q1 transistor should be able to accept VCE equal to 60V.

The ISL94208 is a battery management analog front end IC has internal controlling FETs to bypass a cell from charging in the instance of an unequal charge distribution within a battery pack. The integrated balancing FETs have the ability to reroute a maximum of 200mA charging current.

The ISL94208 has a deep sleep feature that shuts down all essential circuitry. The device consumes up to 10μ A of supply current in deep sleep mode. The ISL28025 has a low power mode. The ISL28025 consumes less than 1μ A in this mode. The wake-up mode is activated when a low to high logic state transition is received from the SMBALERT2 pin of ISL28025. Q2 is activated causing the WKUP pin logic state to transition from high to low. The transition of WKUP pin logic state results in the ISL94208 waking up.

All functionality of the chip is controlled through and I^2C interface.

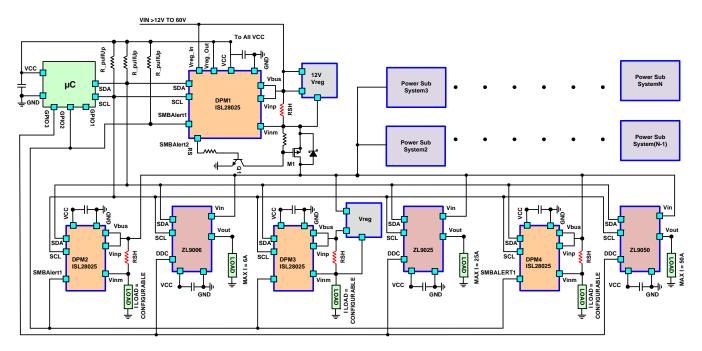


FIGURE 102. AN EXAMPLE OF A POWER DISTRIBUTION SYSTEM USING THE ISL28025 AND INTERSIL ZLXXXX SERIES

PMBus Compatible Products Simplifies System Designs and Programming Them

PMBus is an industry standard that standardizes the register maps across products. The PMBus capability simplifies the coding required to communicate to each chip. If several unique PMBus products have an analog-to-digital converter, ADC, integrated into the chips and are connected to the same I^2C bus, the programmer needs to command a read from one register to receive the results from each integrated circuit. Controlling each IC works the same way.

Figure 102 illustrates a system that includes both digital power monitors and Intersii's power modules. The ISL28025 versatile input range (OV to 60V) makes the integrated circuit easy to design in. The ISL28025 is an easy solution to monitoring system power in evolved power applications. DPM1 in Figure 102 is connected to monitor the overall system power delivered to the localized subsystems. The SMBALERT2 of DPM1 controls a FET switch, M1, to act like a circuit breaker to the subsystems. DPM1 allows the user to quickly monitor the health of a system. The drain of M1 feeds into a power subsystem. An example of a power subsystem is representative in DPM2 through 4 and Intersil 1 to 3. Intersil has a portfolio of the power products, ZLxxxx series, which regulate set voltages for high current point of loads applications. The Intersil products use a DC/DC architecture to regulate a supply. The architecture is good for delivering large currents to a load in an efficient manner at the cost of a noisier supply voltage. Some power sub-circuits may require a more precise load with less current. In such cases, a LDO regulator can be employed with a DPM.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
October 24,2014	FN8388.1	"Vbus_OV_OT_Set D[5:0]" on page 29, changed step size from "1.95°" to "5.71°C" and added "The mathematical range is -144°C to +221.4.°C". Updated Table 22 on page 30 by adding column OT THRESHOLD VALUE. Changed title of Table 28 on page 31 from "Vbus_OV_OT_Set BITS DEFINED" to "Vshunt_OC_Set BITS DEFINED".
June 30, 2014	FN8388.0	Initial Release

About Intersil

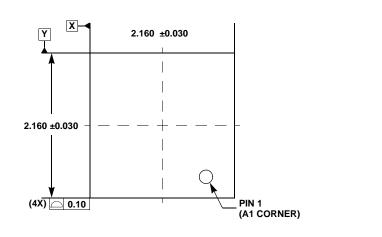
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at <u>www.intersil.com</u>.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

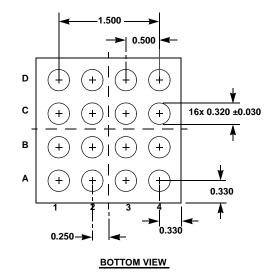
Reliability reports are also available from our website at www.intersil.com/support

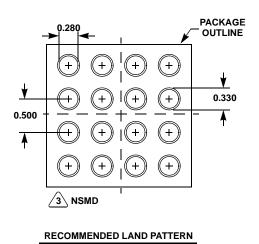
For additional products, see www.intersil.com/en/products.html

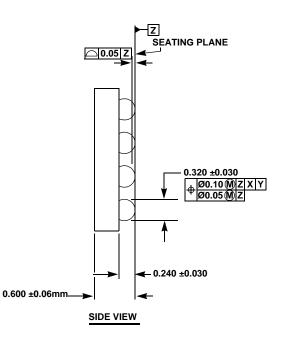
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/gualandreliability.html


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com


Package Outline Drawing W4x4.16C


(WLCSP 0.5mm PITCH) WAFER LEVEL CHIP SCALE PACKAGE


Rev 1, 05/14

TOP VIEW

NOTES:

- 1. All dimensions are in millimeters.
- 2. Dimension and tolerance per ASMEY 14.5M-1994,
- ____ and JESD 95-1 SPP-010.

3. NSMD refers to non-solder mask defined pad design per Intersil Techbrief <u>TB451</u>.