

FAN25801 250 mA, Low-I_Q, Low-Noise, LDO Regulator

Features

- V_{IN}: 2.3 V to 5.5 V
- V_{OUT} = 5.14 V (I_{OUT} Max. = 250 mA)
- Output Noise Density at 250 mA and 10 kHz = 20 nV/√Hz (Integrated 10 µVrms)
- Low I_Q of 17 µA in Regulation and Low-I_Q Dropout Mode with Optimized Dropout Transitions
- <70 mV Dropout Voltage at 250 mA Load</p>
- Controlled Soft-Start to Reduce Inrush Current
- Thermal Shutdown Protection (TSD)
- Input Under-Voltage Lockout (UVLO)
- Short-Circuit Protection (SCP)
- Stable with Two 1.5 µF, 0201 Ceramic Capacitors at VOUT
- 4-Ball WLCSP, 0.65 mm x 0.65 mm, 0.35 mm Pitch, Plated Solder, 330 µm Maximum Thickness

Applications

- WiFi Modules
- PDA Handsets
- Smart Phones, Tablets, Portable Devices

Description

The FAN25801 is a linear low-dropout regulator with a high PSRR (80 dB typical at 100 Hz) and low output noise (typically 10 μV_{RMS} over a 10 Hz to 100 kHz bandwidth). The LDO can provide up to 250 mA of output current.

The enable control pin can be used to shut down the device and disconnect the output load from the input. During shutdown, the supply current drops below 1 μ A.

The FAN25801 is designed to be stable with spacesaving ceramic capacitors as small as 0201 case size. The FAN25801 is available in a 4-bump, 0.35 mm pitch, WLCSP package.

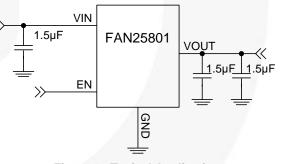
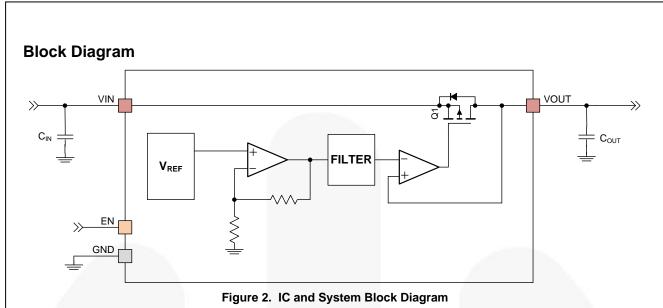



Figure 1. Typical Application

Ordering Information

Part Number	V _{OUT}	I _{оυт} Max.	Operating Temperature	Package	Packing Method
FAN25801AUC514X	5.14 V	250 mA	-40°C to 85°C	4-Bump, WLCSP, 0.65 x 0.65 mm, 0.35 mm Pitch	Tape & Reel

Table 1. Recommended External Components

Component	Description	Vendor	Parameter	Тур.	Unit
C _{IN}	1.5 μF, 6.3 V, X5R, 0201	Murata GRM033R60J155M		1.5 ⁽¹⁾	μF
COUT	2x1.5 µF, 6.3 V, X5R, 0201	Murata GRM033R60J155M	С	1.5 ⁽¹⁾	μF
C _{Alternative} ⁽²⁾	1.0 μF, 6.3 V, X5R, 0201	Murata GRM033R60J105M		1.0 ⁽¹⁾	μF

Notes:

1. Capacitance value does not reflect effects of bias, tolerance, and temperature. See Recommended Operating Conditions and Operation Description sections for more information.

2. C_{Alternative} can be used for both C_{IN} and C_{OUT}. FAN25801 is stable with one 1 µF at C_{IN} and one 1 µF at C_{OUT}.

Pin Configuration

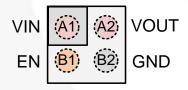


Figure 3. Top-Through View

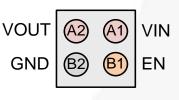


Figure 4. Bottom View

Pin Definitions

Pin #	Name	Description
A1	VIN	Input Voltage. Connect to input power source and C_{IN} .
A2	VOUT	Output Voltage. Connect to C _{OUT} and load.
B1	EN	Enable . The device is in Shutdown Mode when this pin is LOW. No internal pull-down. Do not leave this pin floating. Recommended to not tie EN pin directly to VIN. ⁽³⁾
B2	GND	Ground. Power and IC ground. All signals are referenced to this pin.

Note:

3. EN can be tied to VIN, but it is recommended to tie a 1.8 V logic voltage to drive it.

FAN25801 — 250 mA, Low-I_o, Low-Noise, LDO Regulator

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{IN}	Input Voltage with Respe	nput Voltage with Respect to GND		6.0	V
V _{CC}	Voltage on Any Other Pir	n (with Respect to GND)	-0.3	V _{IN} +0.3 ⁽⁴⁾	V
TJ	Junction Temperature	Junction Temperature			°C
T _{STG}	Storage Temperature	-65	+150	°C	
TL	Lead Soldering Tempera	Lead Soldering Temperature, 10 Seconds		+260	°C
ESD	Electrostatic Discharge Protection Level	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	4000		V
	Protection Level	Charged Device Model per JESD22-C101	1500		
LU	Latch Up			JESD 78D	

Note:

4. Lesser of 6.0 V or V_{IN} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Supply Voltage	2.3		5.5 ⁽⁵⁾	V
I _{OUT}	Output Current (V _{OUT} = 5.14 V)			250	mA
CIN	Input Capacitor (Effective Capacitance) ⁽⁶⁾	0.4	0.8		μF
COUT	Output Capacitor (Effective Capacitance) ⁽⁶⁾	0.4	0.8	15.0	μF
TA	Ambient Temperature	-40		+85	°C
TJ	Junction Temperature	-40		+125	°C

Notes:

5. For $V_{IN} \ge 5V$, thermal properties of the device must be taken into account at maximum load of 250 mA; refer to θ_{JA} thermal properties.

6. Effective capacitance, including the effects of bias, tolerance, and temperature. See the Operation Description section for more information.

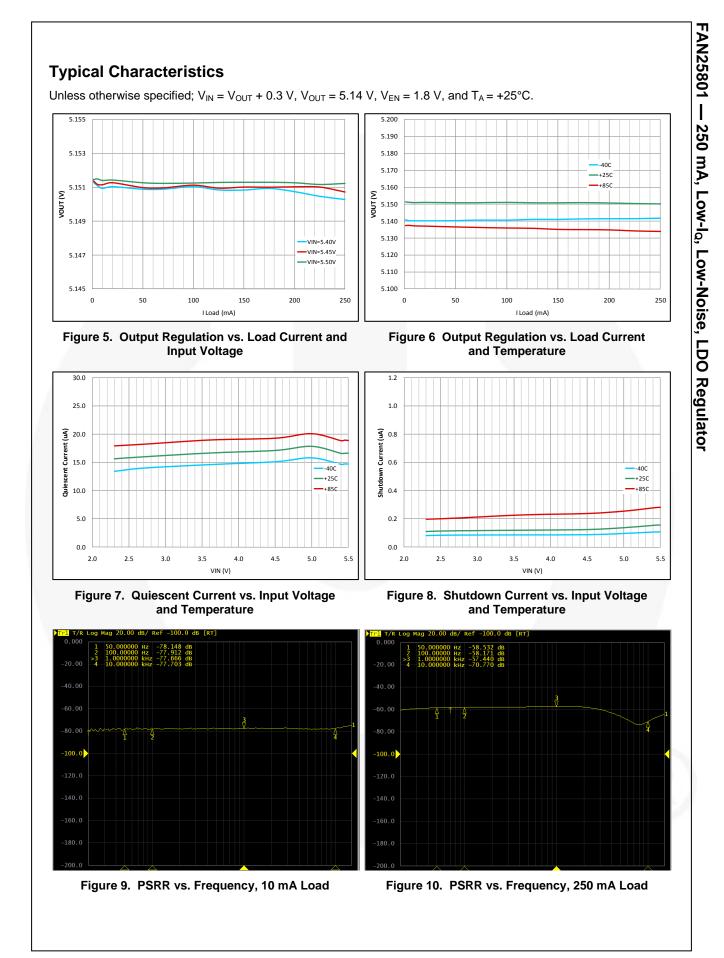
Thermal Properties

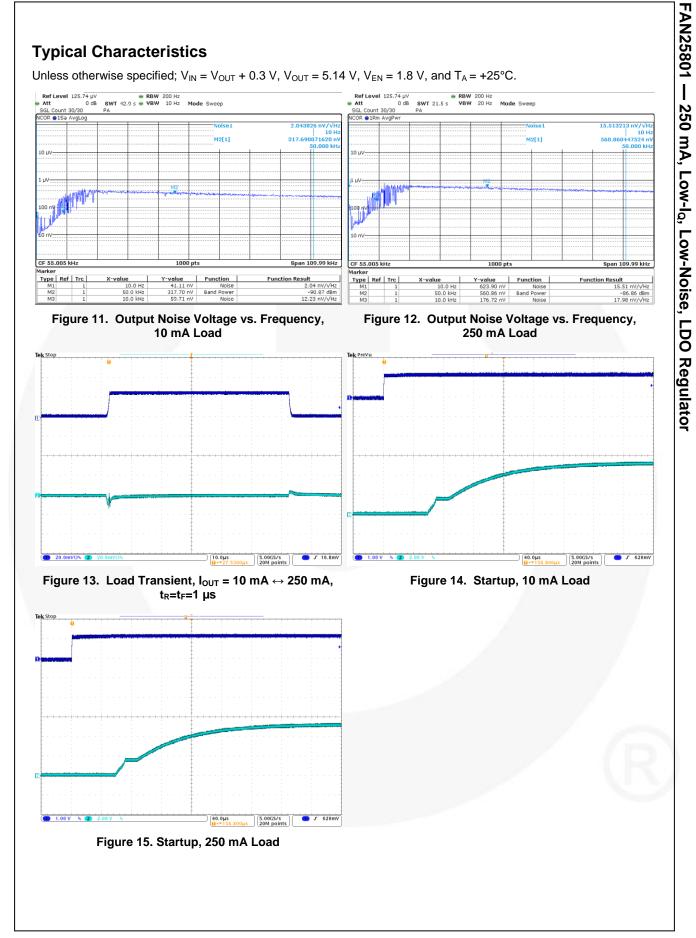
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature, $T_{J(max)}$, at a given ambient temperature, T_A .

Symbol	Parameter	Тур.	Unit
θ_{JA}	Junction-to-Ambient Thermal Resistance	180	°C/W
Ψ_{JB}	Junction-to-PCB Thermal Resistance	50	°C/W

FAN25801 — 250 mA, Low-I_Q, Low-Noise, LDO Regulator

Electrical Specifications


Minimum and maximum values are at $V_{IN} = V_{OUT} + 0.3 \text{ V}$; $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; and test circuit shown in Figure 1. Typical values are at $V_{IN} = V_{OUT} + 0.3 \text{ V}$; $T_A = 25^{\circ}\text{C}$, $I_{LOAD} = 10 \text{ mA}$, and $V_{EN} = 1.8 \text{ V}$, unless otherwise noted.


Symbol	Parameter	Condit	ions	Min.	Тур.	Max.	Unit
LDO						J	
		$5.4 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}, \text{ I}_{\text{LOAD}} = 0 \text{ mA}$			17.0	25.0	•
I _{IN}	V _{IN} Supply Current	$Dropout^{(8)}$, $I_{LOAD} = 0$ r	nA		18.5	30.0	μA
			f = 50 Hz		80		_
PSRR	Dower Supply Dejection Datio ⁽⁷⁾	I _{OUT} = 10 mA,	f = 100 Hz		80		
PORK	Power Supply Rejection Ratio ⁽⁷⁾	V _{IN} = 3.6 V	f = 1 kHz	_	80		dB
			f = 10 kHz		76		
e _n Output Noise Voltage Density		f = 10 kHz	I _{OUT} = 10 mA		16		nV/√Hz
	Output Noise voltage Density		I _{OUT} = 250 mA		20		
	Output Noise Voltage	f = 10 Hz – 100 kHz	$I_{OUT} = 10 \text{ mA}$		7		
en_bw	(Integrated) ⁽⁷⁾	1 = 10 HZ - 100 KHZ	I _{OUT} = 250 mA		10		μV _{RMS}
V _{DO}	V _{OUT} Dropout Voltage ⁽⁸⁾	$\label{eq:Vout} \begin{split} V_{\text{OUT}} &= V_{\text{OUT_TARGET}} - 100 \text{ mV}, \\ I_{\text{OUT}} &= 250 \text{ mA} \end{split}$			70	110	mV
ΔV_{OUT}	V _{OUT} Voltage Accuracy	5 mA \leq I _{OUT} \leq 250 mA, V _{IN} = 5.4 V to 5.5 V		-1.9		+1.9	%
$\Delta V_{\text{OUT_LOAD}}$	Load Regulation	I _{OUT} = 5 mA to 250 mA, V _{OUT} = 5.14 V			8	35	µV/mA
I _{LIM}	V _{OUT} Current Limit	$I_{OUT} = 0 \text{ mA} \rightarrow \text{Current Limit,}$ V _{OUT} Drops by 2%, V _{OUT} = 5.14 V		275	323	400	mA
I _{SD}	Shutdown Supply Current	$V_{EN} = 0 \text{ V}, 2.9 \text{ V} \le V_{IN} \le 4.8 \text{ V}$			0.125	1.000	μA
V _{UVLO}	Under-Voltage Lockout Threshold	Rising V _{IN}			2.1	2.3	V
V _{UVHYS}	Under-Voltage Lockout Hysteresis				150		mV
t _{start}	Startup Time	Rising EN to 95% Vo	_{UT} , I _{OUT} = 10 mA		250	500	μs
TOD	The series of Ohentedown	Rising Temperature			150		
TSD	Thermal Shutdown	Hysteresis			20		°C
Logic Leve	Is: EN			1			
VIH	Enable High-Level Input Voltage			1.05			V
VIL	Enable Low-Level Input Voltage		1			0.4	V
I _{EN}	Input Bias Current	V _{EN} = 1.8 V			0.04	1.00	μA

Notes:

7. Guaranteed by design; not tested in production.

8. Dropout voltage = V_{IN} - V_{OUTx} when V_{OUT} drops more than 100 mV below the nominal regulated V_{OUT} level.

Circuit Description

The FAN25801 is a linear low-dropout (LDO) regulator that has high PSRR and low output noise. The enable control pin can be used to shut down the device and disconnect the output load from the input. During shutdown, the supply current drops below 1 μ A. The LDO is designed to be stable with space-saving ceramic capacitors as small as 0201 case size.

Enable and Soft-Start

When EN is LOW, all circuits are off and the IC draws <550 nA of current. The EN pin does not have an internal pull-down resistor and must not be left floating. When EN is HIGH and V_{IN} is above the UVLO threshold, the regulator begins a soft-start cycle for the output. The soft-start cycle controls inrush current, limiting it to the I_{LIM} peak current limit.

Short-Circuit and Thermal Protection

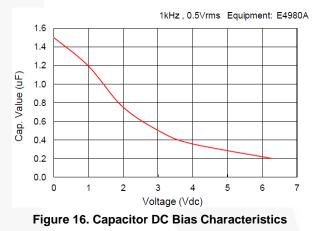
The output current is short-circuit protected. When an output fault occurs, the output current is automatically limited to I_{LIM} and V_{OUT} drops. The resultant V_{OUT} is equal to I_{LIM} multiplied by the fault impedance.

Short-circuit fault or output overload may cause the die temperature to increase and exceed the maximum rating due to power dissipation. In such cases (depending upon the ambient temperature; the V_{IN}, load current, and thermal resistance (θ_{JB}) of the mounted die), the device may enter thermal shutdown.

If the die temperature exceeds the thermal shutdown temperature threshold, the onboard thermal protection disables the output until the temperature drops below its hysteresis value. At that point, the output is re-enabled and a new soft-start sequence occurs.

Thermal Considerations

For best performance, the die temperature and the power dissipated should be kept at moderate values. The maximum power dissipated can be evaluated based on the following relationship:


$$P_{D(\max)} = \left\{ \frac{T_{J(\max)} - T_{A}}{\Theta_{JA}} \right\}$$
(1)

where $T_{J(max)}$ is the maximum allowable junction temperature of the die; T_A is the ambient operating temperature; and θ_{JA} is dependent on the surrounding PCB layout and can be improved by providing a heat sink of surrounding copper ground.

The addition of backside copper with through-holes, stiffeners, and other enhancements can help reduce θ_{JA} . The heat contributed by the dissipation of devices nearby must be included in design considerations.

Capacitor Selection

An output capacitor with an effective capacitance between 400 nF and 15 μ F is required for loop stability. The ESR value should be within 3 to 100 m Ω . DC bias characteristics of the capacitors must be considered when selecting the voltage rating and the case size of the capacitor. Figure 16 is a typical derating curve for a 0201 case size, 1.5 μ F, 6.3 V, X5R capacitor.

PCB Layout Recommendations

Capacitors should be placed as close to the IC as possible. All power and ground pins should be routed to their capacitors using top copper. The copper area connecting to the IC should be maximized to improve thermal performance.

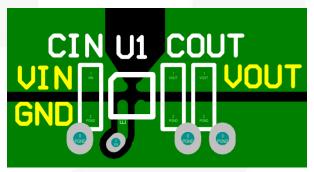
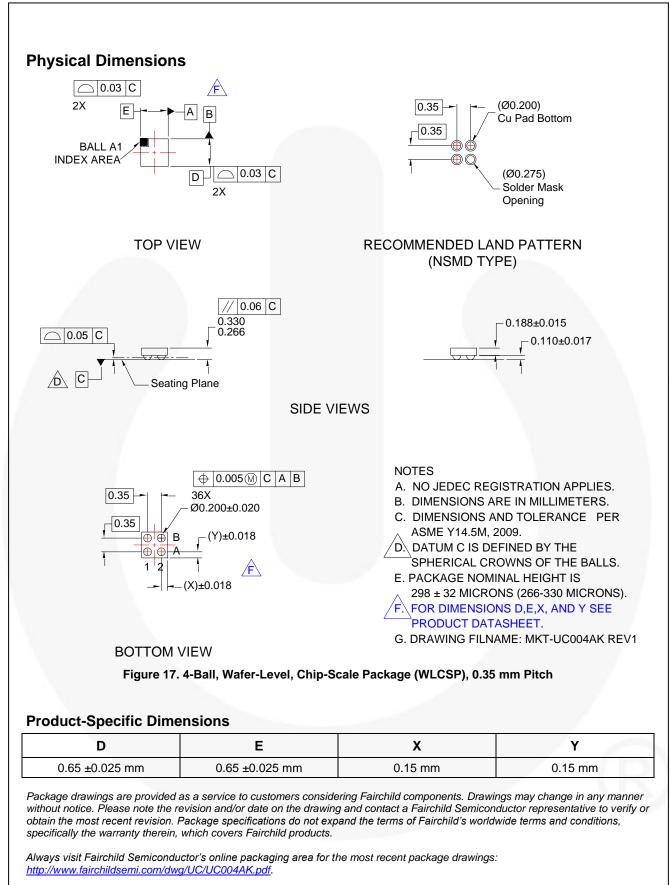



Figure 17. Recommended Layout

For current packing container specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-UC004AK.pdf</u>

FAN25801 — 250 mA, Low-I_a, Low-Noise, LDO Regulator

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

D®

AccuPower™	F-PFS™	
AX-CAP®*	FRFET [®]	
BitSiC™	Global Power Resource SM	Po
Build it Now™	GreenBridge™	Po
CorePLUS™	Green FPS™	Pr
CorePOWER™	Green FPS™ e-Series™	QF
CROSSVOLT	Gmax™	
CTL™	GTO™	QS
	IntelliMAX™	QL
Current Transfer Logic™ DEUXPEED [®]	ISOPLANAR™	Ra
Dual Cool™		
EcoSPARK [®]	Making Small Speakers Sound Louder and Better™	Sa
		Sig
EfficientMax™	MegaBuck™	Sn
ESBC™	MICROCOUPLER	SN
F [®]	MicroFET™	
Fairchild®	MicroPak™	So SF
Fairchild Semiconductor®	MicroPak2™	
	MillerDrive™	ST
FACT Quiet Series™ FACT [®]	MotionMax™	Su
FAST [®]	mWSaver [®]	Su
	OptoHiT™	Su
FastvCore™	OPTOLOGIC®	Su
FETBench™	OPTOPLANAR®	Su
FPS™		Sv

owerTrench[®] owerXS™ rogrammable Active Droop™ FFT S™ uiet Series™ apidConfigure™ aving our world, 1mW/W/kW at a time™ ignalWise™ martMax™ MART START olutions for Your Success™ PM TEALTH™ uperFET[®] uperSOT™-3 uperSOT™-6 uperSOT™-8 upreMOS[®] SyncFET™ Sync-Lock™

GENERAL® TinyBoost[®] TinyBuck TinyCalc™ TinvLogic® TINYOPTO TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ N UHC Ultra FRFET UniFET™

VCX™

仙童™

VisualMax™

VoltagePlus™ XS™ FAN25801 — 250 mA, Low-I_Q, Low-Noise, LDO Regulator

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 168