P-Channel POWERTRENCH® MOSFET

 $-30 \text{ V}, -20 \text{ A}, 14.4 \text{ m}\Omega$

Description

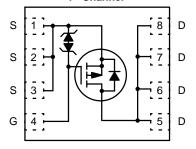
The FDMC6675BZ has been designed to minimize losses in load switch applications. Advancements in both silicon and package technologies have been combined to offer the lowest $R_{DS(on)}$ and ESD protection.

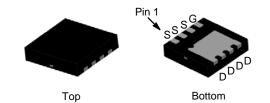
Features

- Max $R_{DS(on)} = 14.4 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -9.5 \text{ A}$
- Max $R_{DS(on)} = 27.0 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -6.9 \text{ A}$
- HBM ESD Protection Level of 8 kV Typical (Note 3)
- Extended V_{GSS} Range (-25 V) for Battery Applications
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Load Switch in Notebook and Server
- Notebook Battery Pack Power Management




ON Semiconductor®

www.onsemi.com

V _{DS}	R _{DS(on)} MAX	I _{D MAX}
-30 V	14.4 mΩ @ 10 V	–20 A

P-Channel

WDFN8 3.3x3.3, 0.65P CASE 511DR

MARKING DIAGRAM

\$Y&Z&2&K FDMC 6675BZ

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &2 = Numeric Date Code

= Lot Code

FDMC6675BZ = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Symbol	Pa	Ratings	Unit		
V _{DS}	Drain to Source Voltage		-30	V	
V _{GS}	Gate to Source Voltage	Gate to Source Voltage			
I _D	Drain Current – Continuous	T _C = 25°C	-20	Α	
	- Continuous	T _A = 25°C (Note 1a)	-9.5		
	- Pulsed		-32		
P _D	Power Dissipation	T _C = 25°C	36	W	
	Power Dissipation	T _A = 25°C (Note 1a)	2.3		
T _J , T _{STG}	Operating and Storage Junction Temp	perature Range	-55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction to Case	3.4	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping (Qty / Packing) [†]
FDMC6675BZ	FDMC6675BZ	WDFN8 3.3x3.3, 0.65P (MLP) (Pb-Free/Halogen Free)	13″	12 mm	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
OFF CHARA	DFF CHARACTERISTICS							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30	_	_	V		
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C	-	-20	-	mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V V _{DS} = -24 V, V _{GS} = 0 V, T _J = 125°C			-1 -100	μΑ		
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	±10	μΑ		
ON CHARA	CTERISTICS							
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1.0	-1.9	-3.0	V		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C	-	-6.0	-	mV/°C		
R _{DS(on)}	Static Drain to Source	$V_{GS} = -10 \text{ V}, I_D = -9.5 \text{ A}$	-	10.7	14.4	mΩ		
	On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -6.9 \text{ A}$	-	17.4	27.0			
		V _{GS} = -10 V, I _D = -9.5 A, T _J = 125°C	-	15.2	20.5	1		
9FS	Forward Transconductance	$V_{DD} = -5 \text{ V}, I_D = -9.5 \text{ A}$	_	28	_	S		

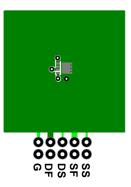
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

DYNAMIC CHARACTERISTICS

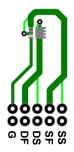
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	ı	2154	2865	pF
C _{oss}	Output Capacitance		_	392	525	pF
C _{rss}	Reverse Transfer Capacitance		1	349	525	pF

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, I_D = -9.5 \text{ A}, V_{GS} = -10 \text{ V},$	-	11	20	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	_	10	20	
t _{d(off)}	Turn-off Delay Time		_	44	71	
t _f	Fall Time		_	26	42	
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } -10 \text{ V}, V_{DD} = -15 \text{ V}, I_D = -9.5 \text{ A}$	_	46	65	nC
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } -5 \text{ V}, V_{DD} = -15 \text{ V}, I_D = -9.5 \text{ A}$	_	26	37	nC
Q_{gs}	Gate to Source Charge	$V_{DD} = -15 \text{ V}, I_D = -9.5 \text{ A}$	ı	6.4	_	nC
Q_{gd}	Gate to Drain "Miller" Charge	$V_{DD} = -15 \text{ V}, I_D = -9.5 \text{ A}$	_	13	_	nC


DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward	$V_{GS} = 0 \text{ V}, I_S = -9.5 \text{ A (Note 2)}$	-	-0.89	-1.3	V
	Voltage	$V_{GS} = 0 \text{ V}, I_S = -1.6 \text{ A (Note 2)}$	-	-0.73	-1.2	V
t _{rr}	Reverse Recovery Time	$I_F = -9.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	_	24	38	ns
Q _{rr}	Reverse Recovery Charge		_	15	27	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a) 53°C/W when mounted on a 1 in² pad of 2 oz copper

b) 125°C/W when mounted on a minimum pad

- 2. Pulse Test: Pulse Width $< 300 \mu s$, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS

(T_J = 25 °C unless otherwise noted)

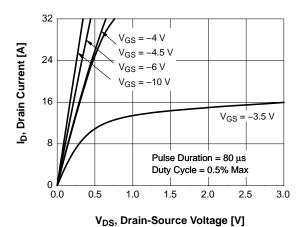
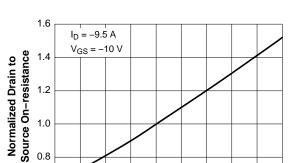



Figure 1. On-Region Characteristics

t_{AV}, Time in Avalanche (ms)

Figure 3. Normalized On Resistance vs Junction Temperature

25 50 75 100 125

0.6

-50

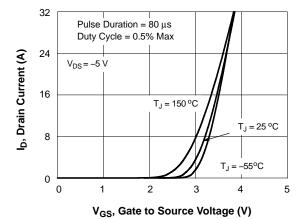
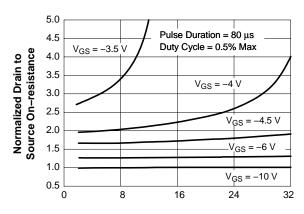



Figure 5. Transfer Characteristics

ID, Drain Current (A)

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

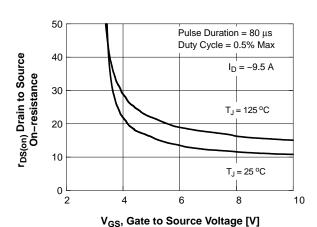
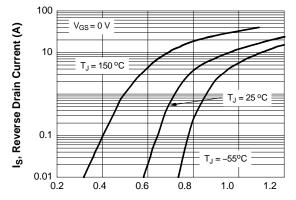



Figure 4. On–Resistance vs Gate to Source Voltage

V_{SD}, Body Diode Forward Voltage (V)

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(T_J = 25 °C unless otherwise noted)

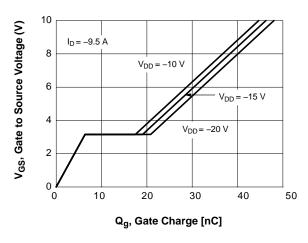


Figure 7. Gate Charge Characteristics

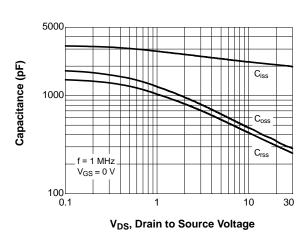


Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

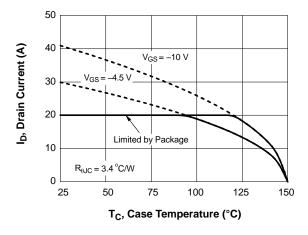


Figure 10. Maximum Continuous Drain Current vs Case Temperature

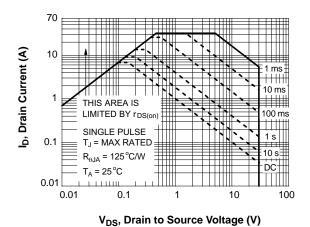


Figure 11. Forward Bias Safe Operating Area

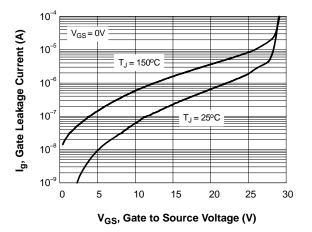


Figure 12. I_{gss} vs V_{gss}

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(T_J = 25 °C unless otherwise noted)

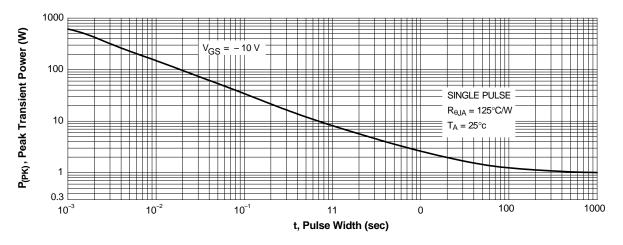
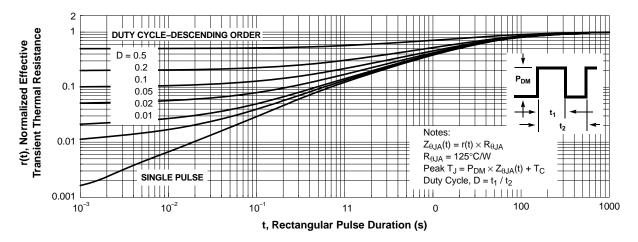
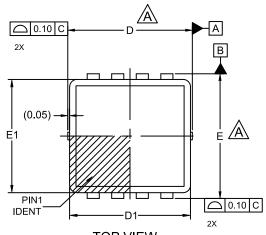
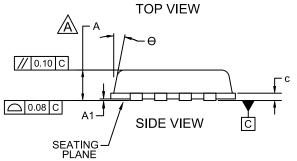
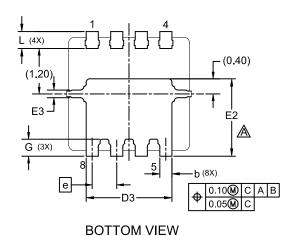


Figure 13. Single Pulse Maximum Power Dissipation

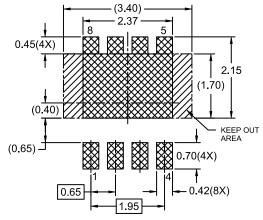




Figure 14. Junction-to-Ambient Transient Thermal Response Curve


PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P

CASE 511DR ISSUE A



NOTES:

- A. DIMENSIONS ARE IN MILLIMETERS.
- B. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- C. SEATING PLANE IS DEFINED BY TERMINAL TIPS ONLY
- D. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS. MOLD FLASH PROTRUSION OR GATE BURR DOES NOT EXCEED 0.150MM.

ЫМ	MILI	LIMETE	RS
DIM	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0.00	-	0.05
b	0.27	0.32	0.37
С	0.15	0.20	0.25
D	3.20	3.30	3.40
D1	3.10	3.20	3.30
D3	2.17	2.27	2.37
E	3.20	3.30	3.40
E1	2.90	3.00	3.10
E2	1.95	2.05	2.15
E3	0.15	0.20	0.25
е	0	.65 BS	С
G	0.40	0.45	0.50
L	0.40	0.45	0.50
θ	0	-	12

RECOMMENDED LAND PATTERN

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.nsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harml

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative