IGBT - Field Stop, Trench

650 V, 75 A

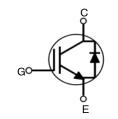
FGH75T65SQD

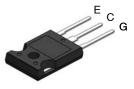
Description

Using novel field stop IGBT technology, ON Semiconductor's new series of field stop 4th generation IGBTs offer the optimum performance for solar inverter, UPS, Welder, Telecom, ESS and PFC applications where low conduction and switching losses are essential.

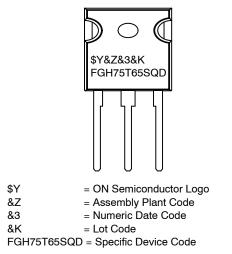
Features

- Maximum Junction Temperature : T_J =175°C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} =1.6 V(Typ.) @ I_C = 75 A
- 100% of the Parts Tested for $I_{LM}(1)$
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- These Devices are Pb-Free and are RoHS Compliant


Applications


• Solar Inverter, UPS, Welder, Telecom, ESS, PFC

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CH

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Desc	Symbol	Rating	Unit	
Collector to Emitter Voltage	V _{CES}	650	V	
Gate to Emitter Voltage	V _{GES}	±20	V	
Transient Gate to Emitter Voltage	7 F	±30	V	
Collector Current	$T_{\rm C} = 25^{\circ}{\rm C}$	Ι _C	150	А
Collector Current	$T_{\rm C} = 100^{\circ}{\rm C}$	7 F	75	А
Pulsed Collector Current	$T_{\rm C} = 25^{\circ}{\rm C}$	I _{LM} (Note 1) 300		А
Pulsed Collector Current		I _{CM} (Note 2)	300	А
Diode Forward Current	$T_{\rm C} = 25^{\circ}{\rm C}$	١ _F	75	А
Diode Forward Current	$T_{\rm C} = 100^{\circ}{\rm C}$	7 F	50	А
Pulsed Diode Maximum Forward Curre	I _{FM} (Note 2)	1 (Note 2) 300		
Maximum Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$	PD	375	W
Maximum Power Dissipation	$T_{\rm C} = 100^{\circ}{\rm C}$	7 F	188	W
Operating Junction Temperature	TJ	-55 to +175	°C	
Storage Temperature Range	T _{stg}	-55 to +175	°C	
Maximum Lead Temp. for soldering Pu	ΤL	300	°C	

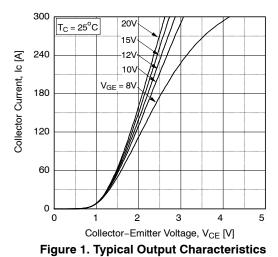
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 300 \text{ A}, R_G = 3 \Omega$, Inductive Load 2. Repetive rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Parameter	Symbol	FGH75T65SQD-F155	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$ (IGBT)	0.4	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$ (Diode)	0.65	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH75T65SQD-F155	FGH75T65SQD	TO-247-3 (Pb-Free)	Tube	-	-	30


ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 V, I_{C} = 1 mA$	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_{CES}/\Delta T_{J}$	I_{C} = 1 mA, Reference to 25°C	-	0.6	_	V/°C
Collector Cut-Off Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μΑ
G-E Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTERISTICs						-
G-E Threshold Voltage	V _{GE(th)}	I_{C} = 75 mA, V_{CE} = V_{GE}	2.6	4.5	6.4	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 75 A, V _{GE} = 15 V	-	1.6	2.1	V
		I_{C} = 75 A, V_{GE} = 15 V, T_{C} = 175°C	-	1.92	-	V

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ies}	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	-	4845	-	pF
Output Capacitance	C _{oes}		-	155	-	pF
Reverse Transfer Capacitance	C _{res}	7	-	14	-	pF
SWITCHING CHARACTERISTICS	-					-
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 18.8 \text{ A},$	-	23	-	ns
Rise Time	t _r	$R_G = 4.7 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_C = 25^{\circ}C$	-	10	-	ns
Turn-Off Delay Time	t _{d(off)}		-	120	-	ns
Fall Time	t _f	7	-	7	-	ns
Turn-On Switching Loss	E _{on}	-	-	300	-	μJ
Turn-Off Switching Loss	E _{off}		-	70	-	μJ
Total Switching Loss	E _{ts}		-	370	-	μJ
Turn-On Delay Time	t _{d(on)}	V_{CC} = 400 V, I _C = 37.5 A, R _G = 4.7 Ω, V _{GE} = 15 V, Inductive Load, T _C = 25°C	-	26	-	ns
Rise Time	tr		-	19	-	ns
Turn-Off Delay Time	t _{d(off)}		-	114	-	ns
Fall Time	t _f		-	11	-	ns
Turn-On Switching Loss	E _{on}		-	746	-	μJ
Turn-Off Switching Loss	E _{off}		-	181	-	μJ
Total Switching Loss	E _{ts}		-	927	-	μJ
Turn-On Delay Time	t _{d(on)}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 400 \; V, \; I_C = 18.8 \; A, \\ R_G = 4.7 \; \Omega, \; V_{GE} = 15 \; V, \\ \mbox{Inductive Load}, \; T_C = 175^\circ C \end{array}$	-	22	-	ns
Rise Time	tr		-	12	-	ns
Turn-Off Delay Time	t _{d(off)}		-	135	-	ns
Fall Time	t _f		-	14	-	ns
Turn-On Switching Loss	E _{on}		-	760	-	μJ
Turn-Off Switching Loss	E _{off}		-	180	-	μJ
Total Switching Loss	E _{ts}		-	940	-	μJ
Turn-On Delay Time	t _{d(on)}	$V_{\rm CC} = 400 \text{ V}, I_{\rm C} = 37.5 \text{ A},$	-	24	-	ns
Rise Time	tr	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 175^{\circ}C$	-	24	-	ns
Turn-Off Delay Time	t _{d(off)}		-	125	-	ns
Fall Time	t _f		-	10	-	ns
Turn-On Switching Loss	E _{on}		-	1520	-	μJ
Turn–Off Switching Loss	E _{off}		_	401	-	μJ
Total Switching Loss	E _{ts}	1	_	1921	-	μJ
Total Gate Charge	Qg	V_{CE} = 400 V, I _C = 75 A, V _{GE} = 15 V	-	128	-	nC
Gate to Emitter Charge	Q _{ge}	1	_	23	-	nC
Gate to Collector Charge	Q _{gc}	1	_	29	-	nC

Parametr	Symbol	Test Conditions		Min	Тур	Max	Unit
Diode Forward Voltage	V _{FM}	I _F = 50 A	$T_{C} = 25^{\circ}C$	-	2.0	2.6	V
			T _C = 175°C	_	1.64	-	
Reverse Recovery Energy	E _{rec}	$I_F = 50 \text{ A}, \text{ dI}_F / \text{ dt} = 200 \text{ A}/\mu\text{s}$	T _C = 175°C	-	61	-	μJ
Diode Reverse Recovery Time	t _{rr}		$T_{C} = 25^{\circ}C$	-	43	-	ns
			T _C = 175°C	-	210	-	
Diode Reverse Recovery Charge	Q _{rr}		$T_C = 25^{\circ}C$	-	90	-	nC
			T _C = 175°C	-	1280	-	

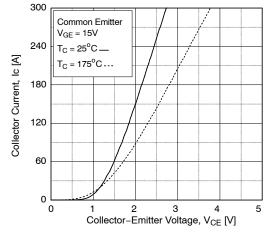


Figure 3. Typical Saturation Voltage Characteristics

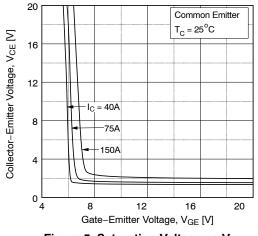
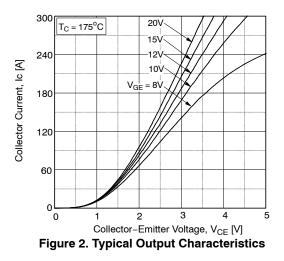



Figure 5. Saturation Voltage vs V_{GE}

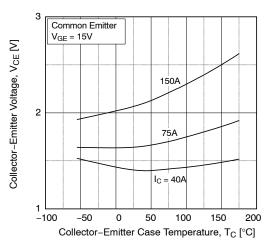


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

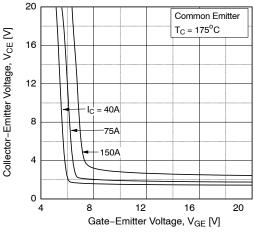


Figure 6. Saturation Voltage vs V_{GE}

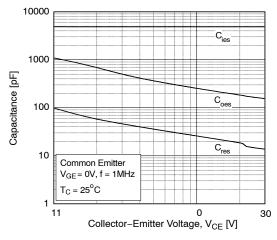


Figure 7. Capacitance Characteristics

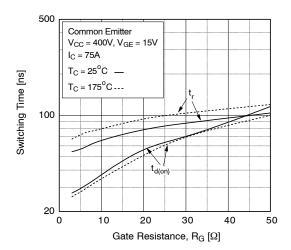



Figure 9. Turn-On Characteristics vs. Gate Resistance

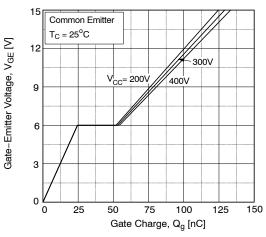


Figure 8. Gate Charge Characteristic

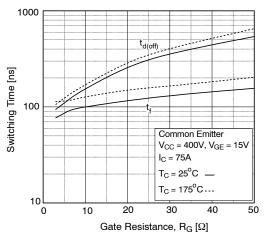
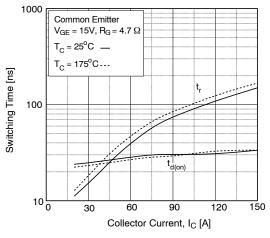
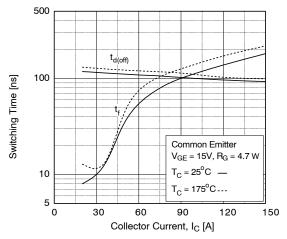
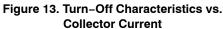





Figure 10. Turn–Off Characteristics vs. Gate Resistance

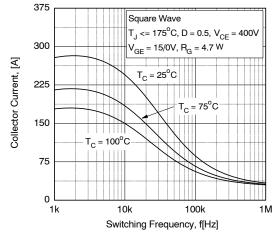


Figure 15. Load Current vs. Frequency

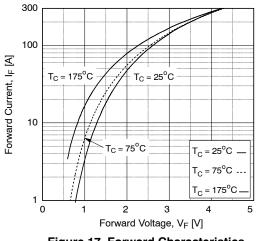


Figure 17. Forward Characteristics

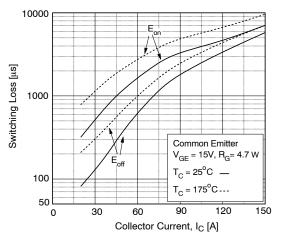


Figure 14. Switching Loss vs. Collector Current



Figure 16. SOA Characteristics

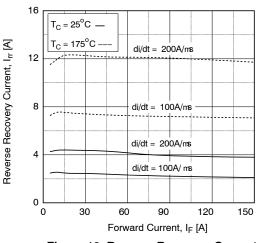
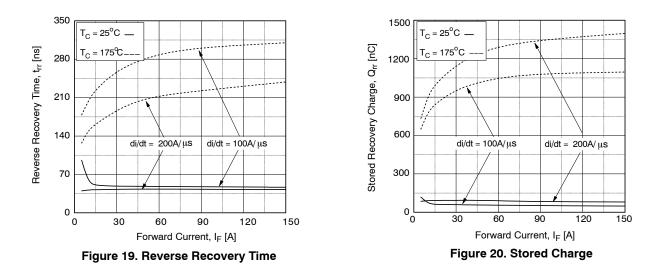
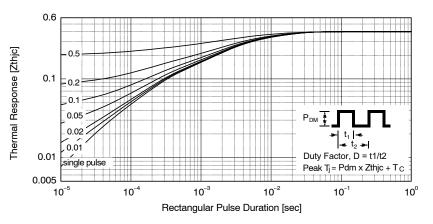
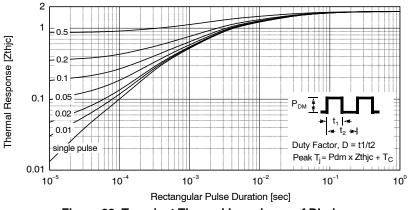
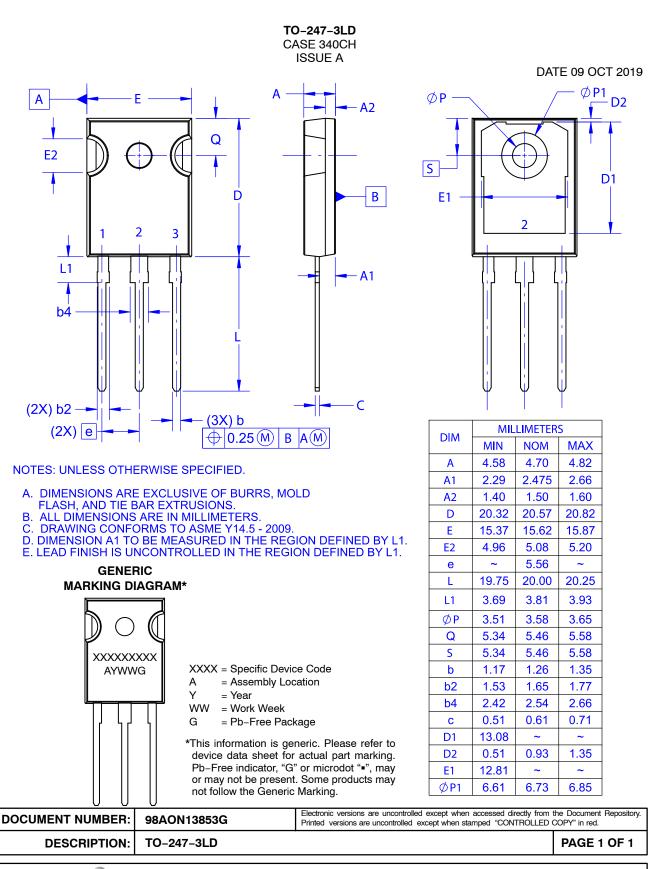






Figure 18. Reverse Recovery Current



ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative