8-Input Data Selector/ Multiplexer with 3-State Outputs

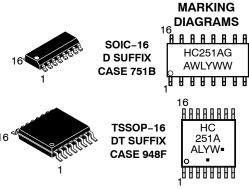
High-Performance Silicon-Gate CMOS

MC74HC251A

The MC54/74HC251 is identical in pinout to the LS251. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device selects one of the eight binary Data Inputs, as determined by the Address Inputs. The Output Enable pin must be a low level for the selected data to appear at the outputs. If Output Enable is high, both the Y and the \overline{Y} outputs are in the high-impedance state. This 3-state feature allows the HC251 to be used in bus-oriented systems.

The HC251 is similar in function to the HC251 which does not have 3-state outputs.


Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

D3 [1 ●	16] V _{CC}
D2 [2	15] D4
D1 [3	14] D5
D0 [4	13] D6
Υ [5	12] D7
₹ [6	11] A0
OUTPUT ENABLE	7	10] A1
GND [8	9] A2

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

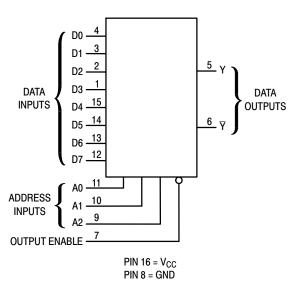


Figure 1. Logic Diagram

FUNCTION TABLE

	Inputs				outs
A2	A 1	Α0	Output Enabled	Υ	¥
X L L H H	X L H H L H	X L H L H L	H L L L L	Z D0 D1 D2 D3 D4 D5 D6 D7	Z D0 D1 D2 D3 D4 D5 D6 D7

Z = high impedance

D0, D1, ..., D7 = the level of the respective D input.

MAXIMUM RATINGS

Symbol	Parameter	Parameter		Unit
V _{CC}	DC Supply Voltage (Referenced	to GND)	-0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to	GND)	-1.5 to V _{CC} + 1.5	V
V _{out}	DC Output Voltage (Referenced	DC Output Voltage (Referenced to GND)		
I _{in}	DC Input Current, per Pin	±25	mA	
I _{out}	DC Output Current, per Pin	±50	mA	
I _{CC}	DC Supply Current, V _{CC} and GN	oly Current, V _{CC} and GND Pins		mA
P _D	Power Dissipation in Still Air	issipation in Still Air SOIC Package TSSOP Package		mW
T _{stg}	Storage Temperature		-65 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types			+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 2) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$		0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

					aranteed Li	imit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V_{out} = 0.1 V or V_{CC} - 0.1 V $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} - 0.1 V $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{out} \end{vmatrix} \le 4.0 \text{ mA} \\ I_{out} \le 5.2 \text{ mA} \end{vmatrix}$	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{out} \end{vmatrix} \le 4.0 \text{ mA} \\ I_{out} \le 5.2 \text{ mA} \end{vmatrix}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	±1.0	± 1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	6.0	± 0.5	± 5.0	± 10	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	8	80	160	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y or ₹ (Figures 2, 3 and 6)	2.0 4.5 6.0	185 37 31	230 46 39	280 56 48	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y or ₹ (Figures 3 and 6)	2.0 4.5 6.0	205 41 35	255 51 43	310 62 53	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 5 and 7)	2.0 4.5 6.0	195 39 33	245 49 42	295 59 50	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 5 and 7)	2.0 4.5 6.0	145 29 25	180 36 31	220 44 38	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output ₹ (Figures 5 and 7)	2.0 4.5 6.0	220 44 37	275 55 47	330 66 56	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output ₹ (Figures 5 and 7)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 6)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)	36	pF

PIN DESCRIPTIONS

INPUTS

D0, D1, ..., D7 (Pins 4, 3, 2, 1, 15, 14, 13, 12)

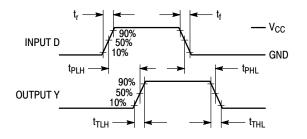
Data inputs. Data on one of these eight binary inputs may be selected to appear on the output.

CONTROL INPUTS

A0, A1, A2 (Pins 11, 10, 9)

Address inputs. The data on these pins are the binary address of the selected input (see the Function Table).

Output Enable (Pin 7)


Output Enable. This input pin must be at a low level for the selected data to appear at the outputs. If the Output Enable pin is high, both the Y and \overline{Y} outputs are taken to the high–impedance state.

OUTPUTS

Y, **∀** (Pins 5, 6)

Data outputs. The selected data is presented at these pins in both true (Y output) and complemented (\overline{Y} output) forms.

SWITCHING WAVEFORMS

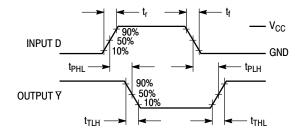
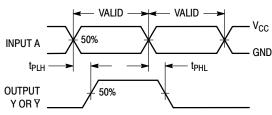
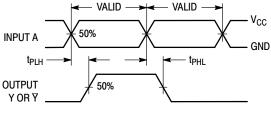
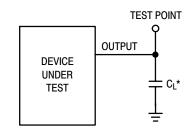




Figure 2.

Figure 3.



 V_{CC} OUTPUT 50% GND **ENABLE** t_{PZL} t_{PLZ} HIGH **IMPEDANCE** 50% Y OR \overline{Y} 10% V_{OL} t_{PZH} t_{PHZ} 90% V_{OH} **∀** OR Y 50% HIGH **IMPEDANCE**

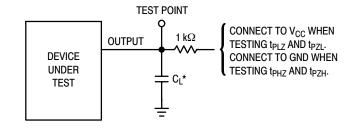

Figure 4.

Figure 5.

TEST CIRCUITS

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 6. Figure 7.

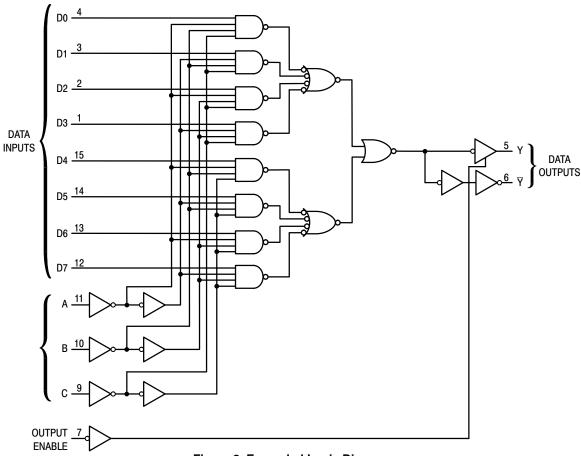
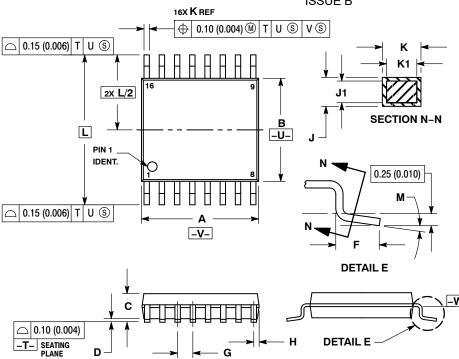


Figure 8. Expanded Logic Diagram

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC251ADG		48 Units / Rail
MC74HC251ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
NLV74HC251ADR2G*	,	2500 Tape & Reel
MC74HC251ADTG	TSSOP-16	96 Units / Rail
MC74HC251ADTR2G	(Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

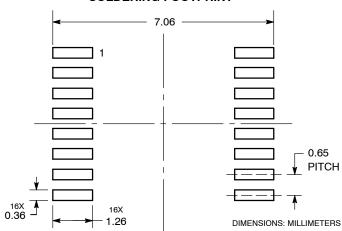
TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE B**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

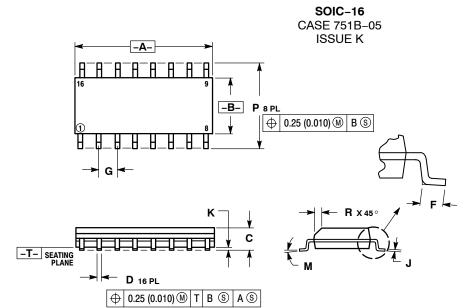
 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 - 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE—W

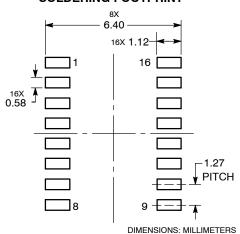
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE—W


	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С	i	1.20	-	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252 BSC	
М	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS



NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product be rein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative