MC74VHC74

Dual D-Type Flip-Flop with Set and Reset

The MC74VHC74 is an advanced high speed CMOS D-type flip-flop fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The signal level applied to the D input is transferred to Q output during the positive going transition of the Clock pulse.

Reset (RD) and Set (SD) are independent of the Clock (CP) and are accomplished by setting the appropriate input Low.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $\mathrm{f}_{\max }=170 \mathrm{MHz}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: $\mathrm{V}_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- Chip Complexity: 128 FETs or 32 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
SOIC-14

FUNCTION TABLE

Inputs				Outputs	
$\mathbf{S D}$	RD	CP	D	Q	Q
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H *	H *
H	H	J	H	H	L
H	H	-	L	L	H
H	H	L	X	No Change	
H	H	H	X	No Change	
H	H	L	X	No Change	

*Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Figure 1. LOGIC DIAGRAM

MC74VHC74

RD1	$1 \bullet$	14	V_{CC}
D1 1	2	13	RD2
CP1	3	12	D2
SD1 1	4	11	CP2
Q1 1	5	10	SD2
Q1 1	6	9	Q2
GND [7	8	Q2

Figure 2. PIN ASSIGNMENT

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to + 7.0	V
$V_{\text {in }}$	DC Input Voltage		-0.5 to +7.0	V
$V_{\text {out }}$	DC Output Voltage		-0.5 to $\mathrm{V}_{C C}+0.5$	V
IIK	Input Diode Current		-20	mA
lok	Output Diode Current		± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin		± 25	mA
Icc	DC Supply Current, V_{CC} and GND Pins		± 50	mA
P_{D}	Power Dissipation in Still Air,	SOIC Packages \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $G N D \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{Cc}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating SOIC Packages: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	v_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ V_{C C} \times 0.7 \end{gathered}$			$\begin{gathered} 1.50 \\ v_{C C} \times 0.7 \end{gathered}$		V
V_{IL}	Maximum Low-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ v_{C C} \times 0.3 \end{gathered}$		$\begin{gathered} 0.50 \\ v_{C C} \times 0.3 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \\ & l_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		
VoL	Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{\mathrm{IL}} \\ & l_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	
$1{ }_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	5.5			2.0		20.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {tpHL }} \end{aligned}$	Maximum Propagation Delay, $C P$ to Q or \bar{Q}	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.7 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 15.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 17.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.6 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Maximum Propagation Delay, SD or RD to Q or \bar{Q}	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} 7.6 \\ 10.1 \end{gathered}$	$\begin{aligned} & 12.3 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 18.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.8 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 9.0 \\ 11.0 \end{array}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & 125 \\ & 75 \end{aligned}$		$\begin{aligned} & 70 \\ & 45 \end{aligned}$		MHz
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \hline 130 \\ & 90 \end{aligned}$	$\begin{aligned} & 170 \\ & 115 \end{aligned}$		$\begin{gathered} 110 \\ 75 \end{gathered}$		
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance				4	10		10	pF

		Typical @ $\mathbf{2 5} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0 V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 1)	25	pF

1. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 2$ (per flip-flop). C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{l}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit		Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, CP	$\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, $\overline{\mathrm{RD}}$ or $\overline{\mathrm{SD}}$	$\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, D to CP	$\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, D to CP	$\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, SD or RD to CP	$\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	ns

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC74DR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
MC74VHC74DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74VHC74DTR2G	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74VHC74DTR2G*	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MC74VHC74

Figure 3.

Figure 4.

Figure 7. Input Equivalent Circuit

PACKAGE DIMENSIONS

SOIC-14
CASE 751A-03
ISSUE L

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27		BSC	0.050
BSC				
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns tne rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each custome application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

