CD54AC08, CD74AC08 QUADRUPLE 2-INPUT POSITIVE-AND GATES

SCHS307C - JANUARY 2001 - REVISED JUNE 2002

- AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
- Speed of Bipolar F, AS, and S, With **Significantly Reduced Power Consumption**
- **Balanced Propagation Delays**
- **Buffered Inputs**
- ±24-mA Output Drive Current
 - Fanout to 15 F Devices
- **SCR-Latchup-Resistant CMOS Process and Circuit Design**
- **Exceeds 2-kV ESD Protection Per** MIL-STD-883, Method 3015

CD54AC08...F PACKAGE CD74AC08...E OR M PACKAGE (TOP VIEW) 14 🛛 V_{CC} 1A 13 🛮 4B 1В П 1Y [] 3 12 🛮 4A 2A 🛮 4 11 🛮 4Y 2B 🛮 5 10 T 3B 2Y [6 9 🛮 3A GND [] 7 8 🛮 3Y

description

The 'AC08 devices are quadruple 2-input positive-AND gates. These devices perform the Boolean function $Y = A \bullet B$ or $Y = \overline{\overline{A} + \overline{B}}$ in positive logic.

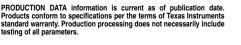
ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – E	Tube	CD74AC08E	CD74AC08E
–55°C to 125°C	SOIC - M	Tube	CD74AC08M	AC08M
-55 0 10 125 0	SOIC - W	Tape and reel	CD74AC08M96	ACUOIVI
	CDIP – F	Tube	CD54AC08F3A	CD54AC08F3A

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each gate)

INP	JTS	OUTPUT
Α	В	Y
Н	Н	Н
L	Χ	L
Х	L	L


logic diagram, each gate (positive logic)

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCHS307C - JANUARY 2001 - REVISED JUNE 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 6 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 2): E package	
M package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			T _A = 2	25°C	–40°0 85°	-	–55°C 125	_	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
Vcc	Supply voltage		1.5	5.5	1.5	5.5	1.5	5.5	V	
		V _{CC} = 1.5 V	1.2		1.2		1.2			
ViH	High-level input voltage	V _{CC} = 3 V	2.1		2.1		2.1		V	
		V _{CC} = 5.5 V	3.85		3.85		3.85			
		V _{CC} = 1.5 V		0.3		0.3		0.3		
V_{IL}	Low-level input voltage	V _{CC} = 3 V		0.9		0.9		0.9	V	
		V _{CC} = 5.5 V		1.65		1.65		1.65		
٧ _I	Input voltage		0	VCC	0	VCC	0	VCC	V	
٧o	Output voltage		0	VCC	0	VCC	0	VCC	V	
ІОН	High-level output current	V _{CC} = 4.5 V to 5.5 V		-24		-24		-24	mA	
lOL	Low-level output current	V _{CC} = 4.5 V to 5.5 V		24		24		24	mA	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.5 V to 3 V		50		50		50	nc/\/	
ΔυΔν	input transition rise or fall fate	V _{CC} = 3.6 V to 5.5 V		20		20		20	ns/V	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SCHS307C - JANUARY 2001 - REVISED JUNE 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		VCC	T _A =	T _A = 25°C		$T_A = 25^{\circ}C$ $-40^{\circ}C TO$ $85^{\circ}C$		–55°C TO 125°C		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX		
			1.5 V	1.4		1.4		1.4			
		$I_{OH} = -50 \mu A$	3 V	2.9		2.9		2.9			
			4.5 V	4.4		4.4		4.4			
Voн	$V_I = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -4 \text{ mA}$	3 V	2.58		2.48		2.4		V	
		$I_{OH} = -24 \text{ mA}$	4.5 V	3.94		3.8		3.7			
		$I_{OH} = -50 \text{ mA}^{\dagger}$	5.5 V					3.85			
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V			3.85					
			1.5 V		0.1		0.1		0.1		
		$I_{OL} = 50 \mu A$	3 V		0.1		0.1		0.1		
			4.5 V		0.1		0.1		0.1		
VOL	VI = VIH or VIL	I _{OL} = 12 mA	3 V		0.36		0.44		0.5	V	
		I _{OL} = 24 mA	4.5 V		0.36		0.44		0.5		
		$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V						1.65		
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V				1.65				
IĮ	V _I = V _{CC} or GND		5.5 V		±0.1		±1		±1	μΑ	
lcc	$V_I = V_{CC}$ or GND,	IO = 0	5.5 V		4		40		80	μΑ	
Ci					10		10		10	pF	

[†] Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 1.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

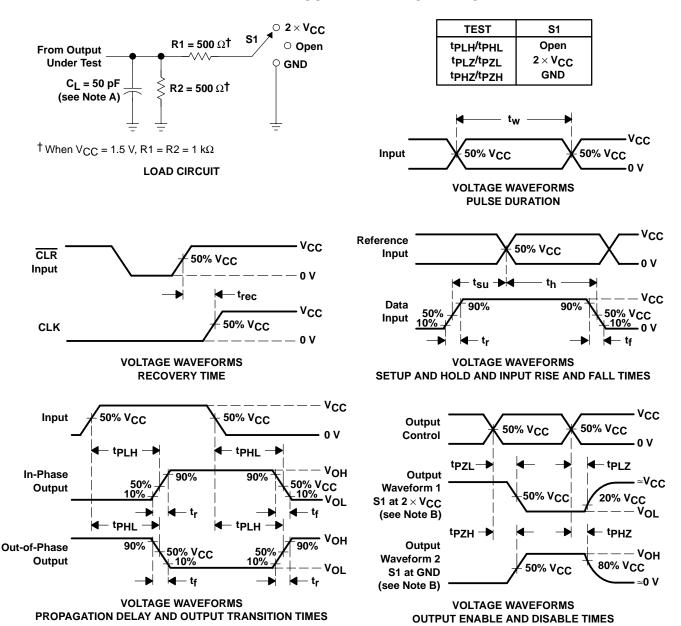
PARAMETER	FROM TO (INPUT) (OUTPUT)		–40°C TO 85°C		–55°C 125	UNIT	
l (iii	(1141 01)	(001101)	MIN	MAX	MIN	MAX	
^t PLH	A or B	V		99		109	no
t _{PHL}	AUIB	1		99		109	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°C TO 85°C		–55°C TO 125°C		UNIT
	(1141 01)	(001101)	MIN	MAX	MIN	MAX	
^t PLH	A or B	V	3.1	11.1	3.1	12.2	no
t _{PHL}	AUID	Ī	3.1	11.1	3.1	12.2	ns

CD54AC08, CD74AC08 QUADRUPLE 2-INPUT POSITIVE-AND GATES

SCHS307C – JANUARY 2001 – REVISED JUNE 2002


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°0 85°		–55°C 125	UNIT	
	(1141 31)	(5511 51)	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	V	2.2	7.9	2.2	8.7	20
^t PHL	AUIB	ſ	2.2	7.9	2.2	8.7	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER			
C _{pd}	Power dissipation capacitance	50	pF	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3$ ns, $t_f = 3$ ns. Phase relationships between waveforms are arbitrary.
- D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpLH and tpHL are the same as tpd.
- G. tpzL and tpzH are the same as ten.
- H. tpLz and tpHz are the same as tdis.

Figure 1. Load Circuit and Voltage Waveforms

ti.com 18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD54AC08F3A	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
CD74AC08E	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74AC08EE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74AC08M	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC08M96	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC08M96E4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC08ME4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

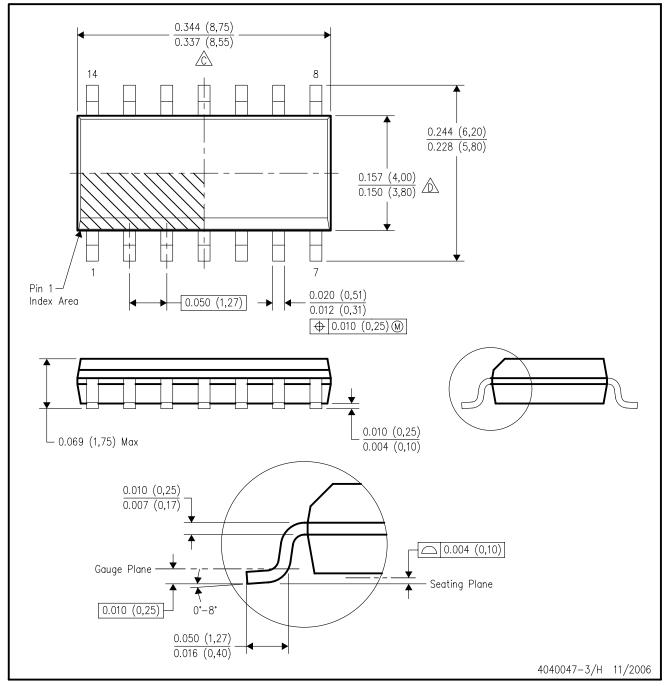
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated