LF411 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

- Low Input Bias Current, 50 pA Typ
- Low Input Noise Current, 0.01 pA//Hz Typ
- Low Supply Current, 2 mA Typ
- High Input impedance, $10^{12} \Omega$ Typ
- Low Total Harmonic Distortion
- Low 1/f Noise Corner, 50 Hz Typ
- Package Options Include Plastic Small-Outline (D) and Standard (P) DIPs

D OR P PACKAGE (TOP VIEW) BAL1 8 🛛 NC IN-Π 2 7 Vcc+ 6 OUT IN+ П 3 BAL2 VCC. 5

NC - No internal connection

description

This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage and a maximum input offset voltage drift. It requires low supply current, yet maintains a large gain-bandwidth product and a fast slew rate. In addition, the matched high-voltage JFET input provides very low input bias and offset currents.

The LF411 can be used in applications such as high-speed integrators, digital-to-analog converters, sample-and-hold circuits, and many other circuits.

The LF411C is characterized for operation from 0°C to 70°C. The LF411I is characterized for operation from -40°C to 85°C.

symbol

AVAILABLE OPTIONS PACKAGE VIOmax TA SMALL OUTLINE PLASTIC DIP AT 25°C (D) (P) LF411CD LF411CP 0°C to 70°C 2 mV –40°C to 85°C LF411ID LF411IP 2 mV

The D packages are available taped and reeled. Add the suffix R to the device type (i.e., LF411CDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

LF411 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+}	18 V
Supply voltage, V _{CC}	18 V
Differential input voltage, VID	±30 V
Input voltage, V _I (see Note 1)	±15 V
Duration of output short circuit	Unlimited
Continuous total power dissipation	
Package thermal impedance, θ_{JA} (see Note 2): D package	197°C/W
P package	104°C/W
Storage temperature range, T _{sto}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

	C SU	FFIX	I SUF		
	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{CC +}	3.5	18	3.5	18	V
Supply voltage, V _{CC –}	-3.5	-18	-3.5	-18	V
Operating free-air temperature, T _A	0	70	-40	-85	°C

electrical characteristics over operating free-air temperature range, $V_{CC\pm}=\pm 15\,V$ (unless otherwise specified)

DADAMETED		TEST CO	NDITIONS	Т	мілі	TVD	MAY									
	FARAMETER			LF411C	LF411I	WIIN	ITP	WAA	UNIT							
VIO	Input offset voltage	$V_{IC} = 0,$	$R_S = 10 \text{ k}\Omega$	25°C	25°C		0.8	2	mV							
αγιο	Average temperature coeffi- cient of input offset voltage	$V_{IC} = 0,$	R _S = 10 kΩ				10	20†	μV/°C							
1.0	land affect compared	$\lambda = 0$		25°C	25°C		25	100	pА							
UO I	Input offset current+	AIC = 0		70°C	85°C			2	nA							
	to a third summary t	V/10 = 0		25°C	25°C		50	200	pА							
ЧВ	Input bias current+	$v_{\rm IC} = 0$		70°C	85°C			4	nA							
VICR	Common-mode input voltage range					±11	-11.5 to 14.5		V							
V _{OM}	Maximum peak output-voltage swing	$R_L = 10 \text{ k}\Omega$				±12	±13.5		V							
A	Large-signal differential	V- 140.V	$V_{a} = \pm 10 V$		$\lambda = \pm 10 \lambda$	$V_{2} = \pm 10 V_{2}$	$V_{a} = \pm 10 V$		$V_{a} = \pm 10 V$	$\mathbf{P}_{\mathbf{k}} = 2 \mathbf{k} 0$	25°C	25°C	25	200		\//m\/
AVD	voltage	$v_{O} = \pm 10 v,$	KL = 2 K32	0°C to 70°C	-40° C to 85° C	15	200		V/IIIV							
r _i	Input resistance	T _J = 25°C					1012		Ω							
CMR R	Common-mode rejection ratio	$R_{S} \le 10 \ k\Omega$				70	100		dB							
k SVR	Supply-voltage rejection ratio	See Note 3				70	100		dB							
ICC	Supply current						2	3.4	mA							

[†] At least 90% of the devices meet this limit for α_{VIO} .

[‡] Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as possible.

NOTE 3: Supply-voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

LF411 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

operating characteristics, V_{CC \pm} = ±15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate		8	13		V/µs
B ₁	Unity-gain bandwidth		2.7	3		MHz
Vn	Equivalent input noise voltage	f = 1 kHz, $R_S = 20 \Omega$		18		nV/√Hz
۱ _n	Equivalent input noise current	f = 1 kHz		0.01		pA/√Hz

www.ti.com

7-Jun-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LF411CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
LF411CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
LF411CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
LF411CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
LF411CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
LF411CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
LF411CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
LF411CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
LF411ID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	Samples Not Available
LF411IDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	Samples Not Available
LF411IP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	Samples Not Available

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

www.ti.com

7-Jun-2010

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal	*All	dimensions	are	nominal
----------------------------	------	------------	-----	---------

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LF411CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LF411CDR	SOIC	D	8	2500	340.5	338.1	20.6

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated