LM4120

LM4120 Precision Micropower Low Dropout Voltage Reference

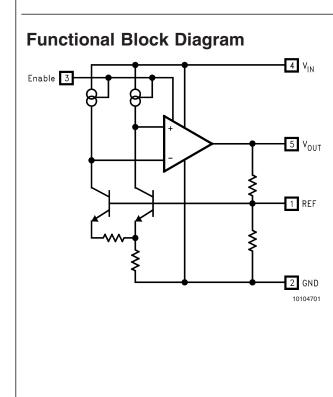
Literature Number: SNVS049B

LM4120 **Precision Micropower Low Dropout Voltage Reference General Description Features**

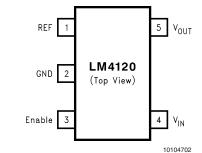
The LM4120 is a precision low power low dropout bandgap voltage reference with up to 5 mA output current source and sink capability.

This series reference operates with input voltages as low as 2V and up to 12V consuming 160 µA (Typ.) supply current. In power down mode, device current drops to less than 2 µA.

The LM4120 comes in two grades (A and Standard) and seven voltage options for greater flexibility. The best grade devices (A) have an initial accuracy of 0.2%, while the standard have an initial accuracy of 0.5%, both with a tempco of 50ppm/°C guaranteed from -40°C to +125°C.


The very low dropout voltage, low supply current and powerdown capability of the LM4120 makes this product an ideal choice for battery powered and portable applications.

The device performance is guaranteed over the industrial temperature range (-40°C to +85°C), while certain specs are guaranteed over the extended temperature range (-40°C to +125°C). Please contact National for full specifications over the extended temperature range. The LM4120 is available in a standard 5-pin SOT-23 package.


- Small SOT23-5 package
- Low dropout voltage: 120 mV Typ @ 1 mA
- High output voltage accuracy:
- Source and Sink current output: ±5 mA
- Supply current:
- Low Temperature Coefficient:
- Enable pin
- 1.8, 2.048, 2.5, 3.0, 3.3, 4.096 Fixed output voltages: and 5.0V
- -40°C to +85°C Industrial temperature Range:
- (For extended temperature range, -40°C to 125°C, contact National Semiconductor)

Applications

- Portable, battery powered equipment
- Instrumentation and process control
- Automotive & Industrial
- Test equipment
- Data acquisition systems
- Precision regulators
- Battery chargers
- Base stations
- Communications
- Medical equipment

Connection Diagram

Refer to the Ordering Information Table in this Data Sheet for Specific Part Number

SOT23-5 Surface Mount Package

March 2005

0.2%

160 µA Typ.

50 ppm/°C

Ordering Information

Industrial Temperature Range (-40°C to + 85°C)

Initial Output Voltage Accuracy at 25°C And Temperature Coefficient	LM4120 Supplied as 1000 Units, Tape and Reel	LM4120 Supplied as 3000 Units, Tape and Reel	Top Marking
	LM4120AIM5-1.8	LM4120AIM5X-1.8	R21A
	LM4120AIM5-2.0	LM4120AIM5X-2.0	R14A
	LM4120AIM5-2.5	LM4120AIM5X-2.5	R08A
0.2%, 50 ppm/°C max (A grade)	LM4120AIM5-3.0	LM4120AIM5X-3.0	R15A
	LM4120AIM5-3.3	LM4120AIM5X-3.3	R16A
	LM4120AIM5-4.1	LM4120AIM5X-4.1	R17A
	LM4120AIM5-5.0	LM4120AIM5X-5.0	R18A
	LM4120IM5-1.8	LM4120IM5X-1.8	R21B
	LM4120IM5-2.0	LM4120IM5X-2.0	R14B
	LM4120IM5-2.5	LM4120IM5X-2.5	R08B
0.5%, 50 ppm/°C max	LM4120IM5-3.0	LM4120IM5X-3.0	R15B
	LM4120IM5-3.3	LM4120IM5X-3.3	R16B
	LM4120IM5-4.1	LM4120IM5X-4.1	R17B
	LM4120IM5-5.0	LM4120IM5X-5.0	R18B

SOT-23 Package Marking Information

Only four fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the four fields.

Field Information		
First Field:	٦	
R = Reference		
Second and third Field:		
21 = 1.800V Voltage Option		
14 = 2.048V Voltage Option		
08 = 2.500V Voltage Option		
15 = 3.000V Voltage Option		
16 = 3.300V Voltage Option		
17 = 4.096V Voltage Option		
18 = 5.000V Voltage Option		
Fourth Field:		
A-B = Initial Reference Voltage Tolerance		
$A = \pm 0.2\%$		
$B = \pm 0.5\%$		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Voltage on input or	
enable pins	–0.3V to 14V
Output Short-Circuit Duration	Indefinite
Power Dissipation ($T_A = 25^{\circ}C$) (Note 2):	
MA05B package – θ_{JA}	280°C/W
Power Dissipation	350 mW
ESD Susceptibility (Note 3)	
Human Body Model	2 kV
Machine Model	200V

Lead Temperature: +260°C Soldering, (10 sec.) +215°C Vapor Phase (60 sec.) +215°C Infrared (15 sec.) +220°C

Operating Range (Note 1)

Electrical Characteristics LM4120-1.8V. 2.048V and 2.5V

LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified $V_{IN} = 3.3V$, $I_{LOAD} = 0$, $C_{OUT} = 0.01\mu$ F, $T_A = T_j = 25^{\circ}$ C. Limits with standard typeface are for $T_j = 25^{\circ}$ C, and limits in **boldface type** apply over the -40° C $\leq T_A \leq +85^{\circ}$ C temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{out}	Output Voltage Initial Accuracy LM4120A-1.800 LM4120A-2.048 LM4120A-2.500				±0.2	%
	LM4120-1.800 LM4120-2.048 LM4120-2.500				±0.5	%
TCV _{OUT} /°C	Temperature Coefficient	$-40^{\circ}C \le T_A \le +125^{\circ}C$		14	50	ppm/°c
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	$3.3V \le V_{IN} \le 12V$		0.0007	0.008 0.01	%/V
		$0 \text{ mA} \leq I_{\text{LOAD}} \leq 1 \text{ mA}$		0.03	0.08 0.17	%/mA
$\Delta V_{OUT} / \Delta I_{LOAD}$	OUT / ΔILOAD	$1 \text{ mA} \leq I_{LOAD} \leq 5 \text{ mA}$		0.01	0.04 0.1	
		$-1 \text{ mA} \le I_{LOAD} \le 0 \text{ mA}$		0.04	0.12	
		$-5 \text{ mA} \le I_{\text{LOAD}} \le -1 \text{ mA}$		0.01		
		$I_{LOAD} = 0 \text{ mA}$		45	65 80	
V _{IN} -V _{OUT}	N ^{-V} OUT Dropout Voltage (Note 6)	$I_{LOAD} = +1 \text{ mA}$		120	150 180	mV
		$I_{LOAD} = +5 \text{ mA}$		180	210 250	
V _N	Output Noise Voltage	0.1 Hz to 10 Hz		20		μV_{PP}
	(Note 8)	10 Hz to 10 kHz		36		μV_{PP}
I _S	Supply Current			160	250 275	μA
I _{SS}	Power-down Supply Current	Enable = $0.4V$ - $40^{\circ}C \le T_{J} \le +85^{\circ}C$ Enable = $0.2V$			1 2	μΑ
V _H	Logic High Input Voltage		2.4	2.4		V

Electrical Characteristics

LM4120-1.8V, 2.048V and 2.5V Unless otherwise specified $V_{IN} = 3.3V$, $I_{LOAD} = 0$, $C_{OUT} = 0.01\mu$ F, $T_A = T_j = 25^{\circ}$ C. Limits with standard typeface are for $T_j = 25^{\circ}$ C, and limits in **boldface type** apply over the -40° C $\leq T_A \leq +85^{\circ}$ C temperature range. (Continued)

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
VL	Logic Low Input Voltage			0.4	0.2	V
I _H	Logic High Input Current			7	15	μA
IL	Logic Low Input Current			0.1		μA
		$V_{IN} = 3.3V, V_{OUT} = 0$		15		
	Short Circuit Current		6		30	mA
I _{SC}		$V_{IN} = 12V, V_{OUT} = 0$		17		
			6		30	
Hyst	Thermal Hysteresis (Note 7)	$-40^{\circ}C \le T_A \le 125^{\circ}C$		0.5		mV/V
ΔV_{OUT}	Long Term Stability (Note 9)	1000 hrs. @ 25°C		100		ppm

Electrical Characteristics

LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified $V_{IN} = V_{OUT} + 1V$, $I_{LOAD} = 0$, $C_{OUT} = 0.01\mu$ F, $T_A = T_j = 25^{\circ}$ C. Limits with standard typeface are for $T_j = 25^{\circ}$ C, and limits in **boldface type** apply over the -40° C $\leq T_A \leq +85^{\circ}$ C temperature range.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{out}	Output Voltage Initial Accuracy LM4120A-3.000 LM4120A-3.300 LM4120A-4.096 LM4120A-5.000				±0.2	%
	LM4120-3.000 LM4120-3.300 LM4120-4.096 LM4120-5.000				±0.5	%
TCV _{OUT} /°C	Temperature Coefficient	$-40^{\circ}C \le T_A \le +125^{\circ}C$		14	50	ppm/°c
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	$(V_{OUT} + 1V) \le V_{IN} \le 12V$		0.0007	0.008 0.01	%/V
		$0 \text{ mA} \le I_{\text{LOAD}} \le 1 \text{ mA}$		0.03	0.08 0.17	
$\Delta V_{OUT} / \Delta I_{LOAD}$	Load Regulation	$1 \text{ mA} \le I_{LOAD} \le 5 \text{ mA}$		0.01	0.04 0.1	%/mA
		$-1 \text{ mA} \le I_{LOAD} \le 0 \text{ mA}$		0.04	0.12	
		$-5 \text{ mA} \leq I_{LOAD} \leq -1 \text{ mA}$		0.01		
		$I_{LOAD} = 0 \text{ mA}$		45	65 80	
V _{IN} -V _{OUT}	Dropout Voltage (Note 6)	$I_{LOAD} = +1 \text{ mA}$		120	150 180	mV
		$I_{LOAD} = +5 \text{ mA}$		180	210 250	

LM4120

Electrical Characteristics LM4120-3.0V, 3.3V, 4.096V and 5.0V Unless otherwise specified $V_{IN} = V_{OUT} + 1V$, $I_{LOAD} = 0$, $C_{OUT} = 0.01 \text{ J}_{LOAD} = 10$, $C_{OUT} = 0.01 \text{ J}_{LOAD} = 10$, $C_{OUT} = 0.01 \text{ J}_{LOAD} = 0$, $C_{OUT} = 0.01 \text{ J}_{LOAD} = 0.01 \text{ J}_{LOAD} = 0$, $C_{OUT} = 0.01 \text{ J}_{LOAD} = 0.01 \text{ J}_{LOAD}$

 0.01μ F, $T_A = T_j = 25^{\circ}$ C. Limits with standard typeface are for $T_j = 25^{\circ}$ C, and limits in **boldface type** apply over the -40° C $\leq T_A \leq +85^{\circ}$ C temperature range. (Continued)

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _N	Output Noise Voltage	0.1 Hz to 10 Hz		20		μV_{PP}
	(Note 8)	10 Hz to 10 kHz		36		μV _{PP}
I _S	Supply Current			160	250 275	μA
I _{SS}	Power-down Supply Current	Enable = $0.4V$ -40°C $\leq T_J \leq +85°C$ Enable = $0.2V$			1 2	μA
V _H	Logic High Input Voltage		2.4	2.4		V
VL	Logic Low Input Voltage			0.4	0.2	V
I _H	Logic High Input Current			7	15	μA
IL	Logic Low Input Current			0.1		μA
		V _{OUT} = 0		15		
ı	Short Circuit Current		6		30	mA
I _{SC}		V _{IN} = 12V, V _{OUT} = 0		17		IIIA
			6		30	
Hyst	Thermal Hysteresis (Note 7)	$-40^{\circ}C \le T_A \le 125^{\circ}C$		0.5		mV/V
ΔV_{OUT}	Long Term Stability (Note 9)	1000 hrs. @ 25°C		100		ppm

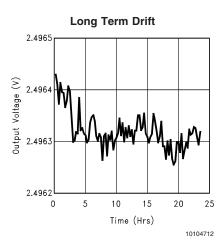
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by T_{JMAX} (maximum junction temperature), θ_{J-A} (junction to ambient thermal resistance) and T_A (ambient temperature). The maximum power dissipation at any temperature is: $PDiss_{MAX} = (T_{JMAX} - T_A)/\theta_{J-A}$ up to the value listed in the Absolute Maximum Ratings.

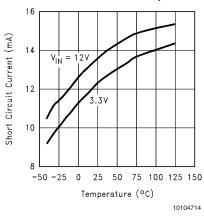
Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: Typical numbers are at 25°C and represent the most likely parametric norm.

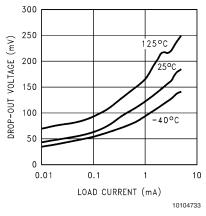
Note 5: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Quality Level (AOQL).

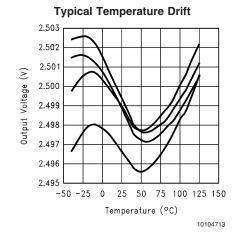

Note 6: Dropout voltage is the differential voltage between V_{OUT} and V_{IN} at which V_{OUT} changes \leq 1% from V_{OUT} at V_{IN} = 3.3V for 1.8V, 2.0V, 2.5V and V_{OUT} + 1V for others.For 1.8V option, dropout voltage is not guaranteed over temperature. A parasitic diode exists between input and output pins; it will conduct if V_{OUT} is pulled to a higher voltage than V_{IN} .

Note 7: Thermal hysteresis is defined as the change in +25°C output voltage before and after exposing the device to temperature extremes.

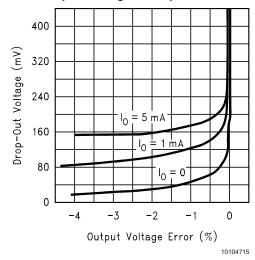

Note 8: Output noise voltage is proportional to V_{OUT} . V_N for other voltage option is calculated using $(V_{N(1.8V)}/1.8) * V_{OUT}$. V_N (2.5V) = $(36\mu V_{PP}/1.8) * 2.5 = 46\mu V_{PP}$. **Note 9:** Long term stability is change in V_{BEF} at 25°C measured continuously during 1000 hrs.

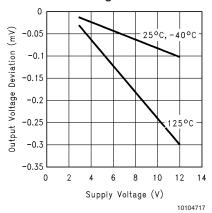
LM4120 Typical Operating Characteristics

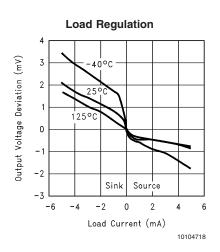

Unless otherwise specified, V_{IN} = 3.3V, V_{OUT} = 2.5V, I_{LOAD} = 0, C_{OUT} = 0.022µF, T_A = 25°C and V_{EN} = V_{IN} .

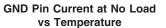


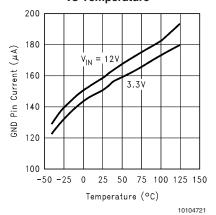
Short Circuit Current vs Temperature

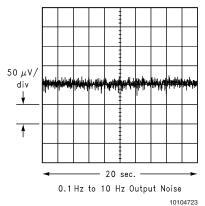


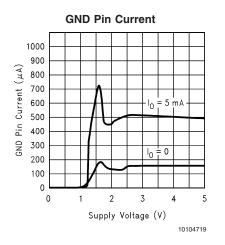



Dropout Voltage vs Output Error

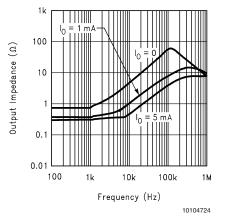




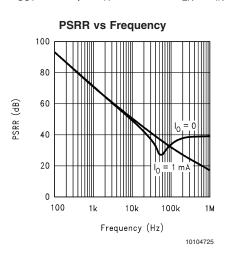

LM4120 Typical Operating Characteristics Unless otherwise specified, $V_{IN} = 3.3V$, $V_{OUT} = 2.5V$, $I_{LOAD} = 0$, $C_{OUT} = 0.022\mu$ F, $T_A = 25^{\circ}$ C and $V_{EN} = V_{IN}$. (Continued)

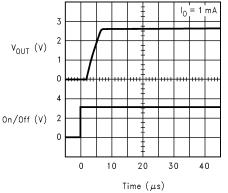


0.1Hz to 10Hz output Noise



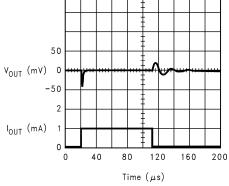
GND Pin Current vs Load

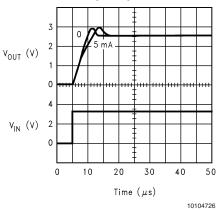

Output Impedance vs Frequency


LM4120

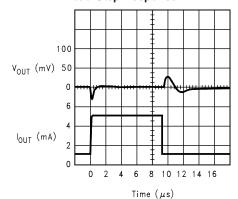
LM4120

LM4120 Typical Operating Characteristics Unless otherwise specified, $V_{IN} = 3.3V$, $V_{OUT} = 2.5V$, $I_{LOAD} = 0$, $C_{OUT} = 0.022\mu$ F, $T_A = 25^{\circ}$ C and $V_{EN} = V_{IN}$. (Continued)



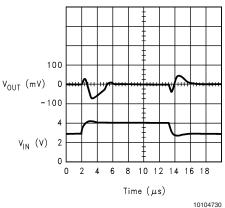

10104727

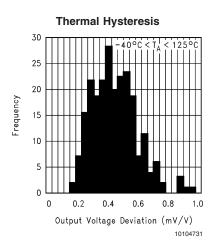
Load Step Response



10104729

Start-Up Response





10104728

LM4120 Typical Operating Characteristics Unless otherwise specified, $V_{IN} = 3.3V$, $V_{OUT} = 2.5V$, $I_{LOAD} = 0$, $C_{OUT} = 0.022\mu$ F, $T_A = 25^{\circ}$ C and $V_{EN} = V_{IN}$. (Continued)

Pin Functions

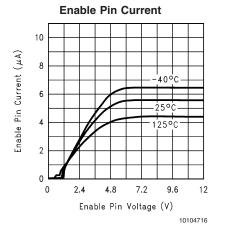
Output (Pin 5): Reference Output.

Input (Pin 4): Positive Supply.

Ground (Pin 2):Negative Supply or Ground Connection.

Enable (Pin 3):Pulled to input for normal operation. Forcing this pin to ground will turn-off the output.

REF (Pin 1):REF Pin. This pin should be left unconnected.


Application Hints

The standard application circuit for the LM4120 is shown in *Figure 1.* It is designed to be stable with ceramic output capacitors in the range of 0.022µF to 0.047µF. Note that 0.022µF is the minimum required output capacitor. These capacitors typically have an ESR of about 0.1 to 0.5 Ω . Smaller ESR can be tolerated, however larger ESR can not. The output capacitor can be increased to improve load transient response, up to about 1µF. However, values above 0.047µF must be tantalum. With tantalum capacitors, in the 1µF range, a small capacitor between the output and the reference pin is required. This capacitor will typically be in the 50pF range. Care must be taken when using output capacitors of 1µF or larger. These application must be thoroughly tested over temperature, line and load.

An input capacitor is typically not required. However, a 0.1μ F ceramic can be used to help prevent line transients from entering the LM4120. Larger input capacitors should be tantalum or aluminium.

The reference pin is sensitive to noise, and capacitive loading. Therefore, the PCB layout should isolate this pin as much as possible.

The enable pin is an analog input with very little hysteresis. About $6\mu A$ into this pin is required to turn the part on, and it

must be taken close to GND to turn the part off (see spec. table for thresholds). There is a *minimum* slew rate on this pin of about $0.003V/\mu$ S to prevent glitches on the output. All of these conditions can easily be met with ordinary CMOS or TTL logic. If the shutdown feature is not required, then this pin can safely be connected directly to the input supply. Floating this pin is not recommended.

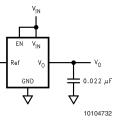
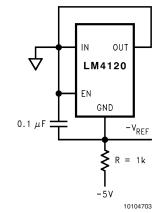


FIGURE 1.

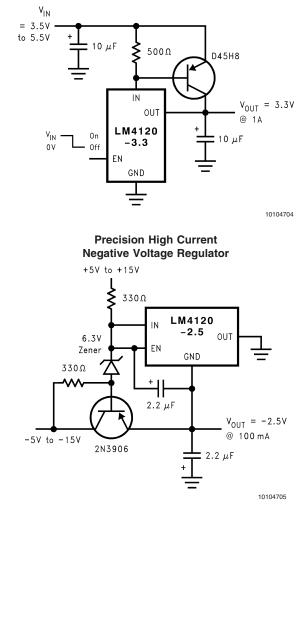
INPUT CAPACITOR

Noise on the power-supply input can effect the output noise, but can be reduced by using an optional bypass capacitor between the input pin and the ground.

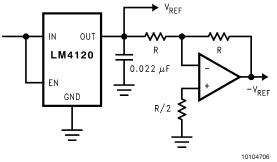
PRINTED CIRCUIT BOARD LAYOUT CONSIDERATION

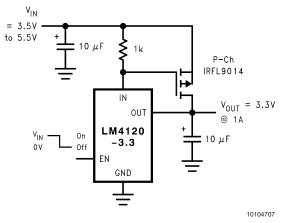

The mechanical stress due to PC board mounting can cause the output voltage to shift from its initial value. References in SOT packages are generally less prone to assembly stress than devices in Small Outline (SOIC) package.

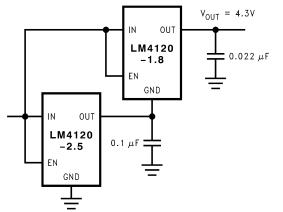
To reduce the stress-related output voltage shifts, mount the reference on the low flex areas of the PC board such as near to the edge or the corner of the PC board.



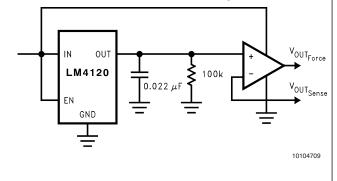
Typical Application Circuits


Voltage Reference with Negative Output


Precision High Current Low Dropout Regulator

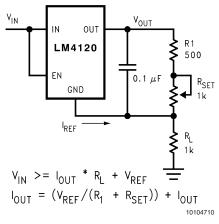


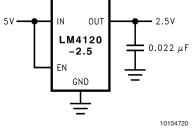
Precision High Current Low Droput Regulator



Stacking Voltage References

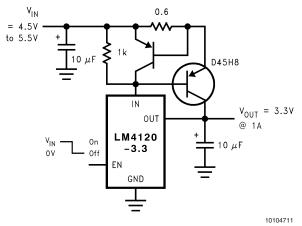
10104708

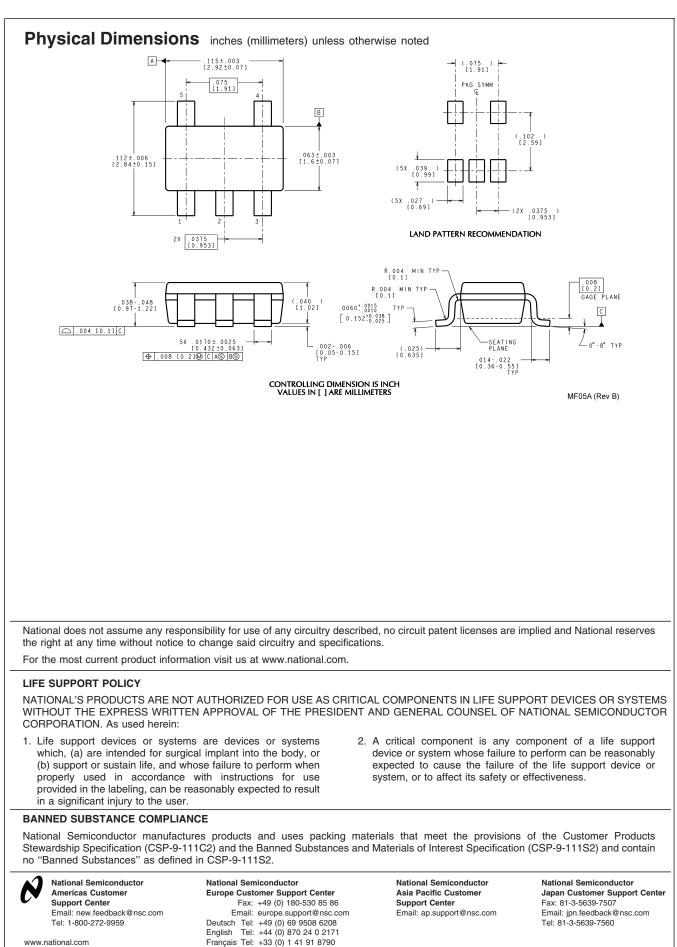

Precision Voltage Reference with Force and Sense Output


Typical Application Circuits

(Continued)

Programmable Current Source




Power Supply Splitter

LM4120

Precision Regulator with Current Limiting Circuit

www.national.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated