General-Purpose FET-INPUT OPERATIONAL AMPLIFIERS

FEATURES

- FET INPUT: $I_{B}=50 p A \max$
- LOW OFFSET VOLTAGE: $750 \mu \mathrm{~V}$ max
- WIDE SUPPLY RANGE: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- SLEW RATE: 10V/ $\mu \mathrm{s}$
- WIDE BANDWIDTH: 4MHz
- EXCELLENT CAPACITIVE LOAD DRIVE
- SINGLE, DUAL, QUAD VERSIONS

DESCRIPTION

The OPA131 series of FET-input op amps provides high performance at low cost. Single, dual, and quad versions in industry-standard pinouts allow cost-effective design options.
The OPA131 series offers excellent general-purpose performance, including low offset voltage, drift, and good dynamic characteristics

Single, dual, and quad versions are available in DIP and SO packages. Performance grades include commercial and industrial temperature ranges.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ${ }^{(1)}$	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
Single OPA131 OPA131 OPA131	$\begin{gathered} \mathrm{SO}-8 \\ \text { " } \\ \mathrm{SO}-8 \\ \text { " } \\ \mathrm{SO}-8 \end{gathered}$	$\begin{aligned} & \text { D } \\ & " \\ & \text { D } \\ & " \\ & \text { D } \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ " \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	OPA131UJ OPA131UA OPA131U	OPA131UJ OPA131UJ/2K5 OPA131UA OPA131UA/2K5 OPA131U OPA131U/2K5	Rails, 100 Tape and Reel, 2500 Rails, 100 Tape and Reel, 2500 Rails, 100 Tape and Reel, 2500
Dual OPA2131 OPA2131	$\begin{gathered} \mathrm{SO}-8 \\ " \\ \mathrm{SO}-8 \end{gathered}$	$\begin{aligned} & \text { D } \\ & " \\ & \text { D } \\ & " \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	OPA2131UJ OPA2131UA	OPA2131UJ OPA2131UJ/2K5 OPA2131UA OPA2131UA/2K5	Rails, 100 Tape and Reel, 2500 Rails, 100 Tape and Reel, 2500
Quad OPA4131 OPA4131 " OPA4131	$\begin{gathered} \text { DIP-14 } \\ \text { " } \\ \text { SOL-16 } \\ " " \\ \text { SOL-14 } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ " \\ \text { DW } \\ " \\ \text { D } \\ \hline " \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ " \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	OPA4131PJ OPA4131PA OPA4131UA OPA4131NJ OPA4131NA	OPA4131PJ OPA4131PA OPA4131UA OPA4131UA/1K OPA4131NJ OPA4131NA	Rails, 25 Rails, 25 Rails, 48 Tape and Reel, 1000 Rails, 58 Rails, 58

NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

ELECTRICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.

PARAMETER	CONDITION	OPA131UAOPA2131UAOPA4131PA, UA, NA			$\begin{gathered} \text { OPA131UJ } \\ \text { OPA2131UJ } \\ \text { OPA4131PJ, NJ } \end{gathered}$			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
OFFSET VOLTAGE Input Offset Voltage OPA131U model only vs Temperature ${ }^{(1)}$ vs Power Supply OPA131U model only	Operating Temperature Range $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$		$\begin{gathered} \pm 0.2 \\ \pm 0.2 \\ \pm 2 \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} \pm 1 \\ 0.75 \\ \pm 10 \\ 200 \\ 100 \end{gathered}$		* * *	$\begin{gathered} \pm 1.5 \\ * \\ * \end{gathered}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$		
INPUT BIAS CURRENT ${ }^{(2)}$ Input Bias Current vs Temperature Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	See Ty	$\begin{aligned} & +5 \\ & \text { pical Charas } \\ & \mid \quad \pm 1 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 50 \\ \text { teristic } \\ \pm 50 \\ \hline \end{array}$		$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	* *	pA pA		
NOISE Input Voltage Noise Noise Density, $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{aligned} & 21 \\ & 16 \\ & 15 \\ & 15 \\ & 3 \end{aligned}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection OPA131U model only	$\mathrm{V}_{\mathrm{CM}}=-12 \mathrm{~V}$ to +14 V	$\begin{gathered} (\mathrm{V}-)+3 \\ 70 \\ 80 \end{gathered}$	$\begin{aligned} & 80 \\ & 86 \end{aligned}$	(V+)-1	$\begin{aligned} & * \\ & * \end{aligned}$	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		$\begin{aligned} & 10^{10}\| \| 1 \\ & 10^{12}\| \| \end{aligned}$			$\begin{aligned} & * \\ & * \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain OPA131U model only	$\mathrm{V}_{\mathrm{O}}=-12 \mathrm{~V}$ to +12 V	$\begin{gathered} 94 \\ 100 \end{gathered}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		*	*		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.1\% 0.01% Total Harmonic Distortion + Noise	$\begin{gathered} G=-1,10 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=-1,10 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{Vrms} \end{gathered}$		$\begin{gathered} 4 \\ 10 \\ 1.5 \\ 2 \\ 0.0008 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ \%		
OUTPUT Voltage Output, Positive Negative Short-Circuit Current		$\begin{aligned} & (\mathrm{V}+)-3 \\ & (\mathrm{~V}-)+3 \end{aligned}$	$\left\lvert\, \begin{gathered} (\mathrm{V}+)-2.5 \\ (\mathrm{~V}-)+2.5 \\ \pm 25 \end{gathered}\right.$		$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	$\mathrm{I}_{0}=0$	± 4.5	$\begin{aligned} & \pm 15 \\ & \pm 1.5 \end{aligned}$	$\begin{gathered} \pm 18 \\ \pm 1.75 \end{gathered}$	*	* *	$\begin{gathered} * \\ \pm 2 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
TEMPERATURE RANGE Operating Range Storage Thermal Resistance, θ_{JA} DIP-8 SO-8 DIP-14 SO-14, SOL-16		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	$\begin{gathered} 100 \\ 150 \\ 80 \\ 110 \end{gathered}$	$\begin{aligned} & +125 \\ & +125 \end{aligned}$	$\begin{gathered} -55 \\ * \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} +125 \\ * \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

* Specifications same as OPA131UA.

NOTES: (1) Ensured by wafer test. (2) High-speed test at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $T_{\text {CASE }}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.

200ns/div

LARGE-SIGNAL STEP RESPONSE
$\mathrm{G}=1, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

$1 \mu \mathrm{~s} / \mathrm{div}$

APPLICATIONS INFORMATION

The OPA131 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power-supply pins should be bypassed with 10nF ceramic capacitors or larger.

The OPA131 series op amps are free from unexpected output phase-reversal common with FET op amps. Many FET-input op amps exhibit phase-reversal of the output when the input common-mode voltage range is exceeded. This can occur in voltage-follower circuits, causing serious problems in control-loop applications. All circuitry is completely independent in dual and quad versions, assuring normal behavior when one amplifier in a package is overdriven or shortcircuited.

OFFSET VOLTAGE TRIM

The OPA131 (single op amp version) provides offset voltage trim connections on pins 1 and 5 . Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not system offset or offset produced by the signal source.

FIGURE 1. OPA131 Offset Voltage Trim Circuit.

INPUT BIAS CURRENT

The input bias current is approximately 5 pA at room temperature and increases with temperature as shown in the typical characteristic "Input Bias Current vs Temperature."
Input bias current also varies with common-mode voltage and power supply voltage. This variation is dependent on the voltage between the negative power supply and the com-mon-mode input voltage. The effect is shown in the typical curve "Input Bias Current vs Common-Mode Voltage."

D (R-PDSO-G**)

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

PACKAGE DRAWINGS (Cont.)
DW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

N (R-PDIP-T**)
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

