LOW POWER, SINGLE-SUPPLY, RAIL-TO-RAIL OPERATIONAL AMPLIFIERS MicroAmplifier ${ }^{\text {T" }}$ Series

FEATURES

- RAIL-TO-RAIL INPUT
- RAIL-TO-RAIL OUTPUT (within 1mV)
- LOW QUIESCENT CURRENT: $150 \mu \mathrm{~A}$ typ
- MicroSIZE PACKAGES

SOT23-5
MSOP-8
TSSOP-14

- GAIN-BANDWIDTH

OPA344: $1 \mathrm{MHz}, \mathrm{G} \geq 1$
OPA345: 3MHz, G ≥ 5

- SLEW RATE OPA344: $0.8 \mathrm{~V} / \mathrm{\mu s}$ OPA345: $2 \mathrm{~V} / \mu \mathrm{s}$
- THD + NOISE: 0.006\%

APPLICATIONS

- PCMCIA CARDS
- DATA ACQUISITION
- PROCESS CONTROL
- AUDIO PROCESSING
- COMMUNICATIONS
- ACTIVE FILTERS
- TEST EQUIPMENT

SO-8, MSOP-8, 8-Pin DIP (OPA2344 Only)

SO-8, 8-Pin DIP (OPA344 Only)

TSSOP-14, SO-14, 14-PIn DIP (OPA4344 Only) Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 5.5 V

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.
Boldface limits apply over the temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER		CONDITION	OPA344NA, UA, PA OPA2344EA, UA, PA OPA4344EA, UA, PA			UNITS				
		MIN	TYP	MAX						
OFFSET VOLTAGE Input Offset Voltage Over Temperature vs Temperature vs Power Supply Over Temperature Channel Separation, dc $f=1 \mathrm{kHz}$	$\begin{array}{r} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{dV}_{\mathrm{OS}} / \mathrm{dT} \\ \text { PSRR } \end{array}$		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 0.2 \\ \pm 0.8 \\ \pm 3 \\ 30 \\ \\ 0.2 \\ 130 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1.2 \\ \\ 200 \\ 250 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$			
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current				± 0.2 See Typ ± 0.2	± 10 Curve ± 10	pA pA pA				
NOISE Input Voltage Noise Input Voltage Noise Density Current Noise Density	e_{n} i_{n}	$\begin{aligned} & f= 0.1 \text { to } 50 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 8 \\ 30 \\ 0.5 \end{gathered}$		μ Vrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Over Temperature Common-Mode Rejection Over Temperature	$V_{C M}$ CMRR CMRR CMRR	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+2.7 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+2.7 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3 \mathrm{~V} \end{gathered}$	$\begin{gathered} -0.3 \\ 76 \\ 74 \\ 70 \\ 68 \\ 66 \\ 64 \end{gathered}$	$\begin{aligned} & 92 \\ & 84 \\ & 80 \end{aligned}$	$(\mathrm{V}+)+0.3$	V dB dB dB dB dB dB				
INPUT IMPEDANCE Differential Common-Mode				$\begin{aligned} & 10^{13} \\| 3 \\ & 10^{13} \\| 6 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature	A_{OL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 10 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 10 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<\left(\mathrm{V}_{+}\right)-10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 400 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-400 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 400 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<\left(\mathrm{V}_{+}\right)-400 \mathrm{mV} \end{aligned}$	$\begin{gathered} 104 \\ 100 \\ 96 \\ 90 \end{gathered}$	$\begin{aligned} & 122 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$				
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1\% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise	$\begin{array}{r} \text { GBW } \\ \text { SR } \\ \\ \text { THD+N } \end{array}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, 2 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V}, 2 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{IN}} \cdot \mathrm{G}=\mathrm{V}_{\mathrm{S}} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=1, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 1 \\ 0.8 \\ 5 \\ 8 \\ 2.5 \\ 0.006 \end{gathered}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ \%				
OUTPUT Voltage Output Swing from Rail ${ }^{(1)}$ Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive	$\begin{array}{r} \mathrm{I}_{\mathrm{SC}} \\ \mathrm{C}_{\mathrm{LOAD}} \end{array}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 96 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 104 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 96 \mathrm{~dB} \\ \mathbf{R}_{\mathrm{L}}=5 \mathbf{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq \mathbf{9 0 d B} \end{gathered}$		1 3 40 ± 15 Typical C	$\begin{gathered} 10 \\ 10 \\ 400 \\ 400 \end{gathered}$	mV mV mV mV mV mA				
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	v_{S}	$\mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$	2.7	$\begin{gathered} 2.5 \text { to } 5.5 \\ 150 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 250 \\ & 300 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$				
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface Mount MSOP-8 Surface Mount 8-Pin DIP SO-8 Surface Mount TSSOP-14 Surface Mount 14-Pin DIP SO-14 Surface Mount	$\theta_{\text {JA }}$		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{gathered} 200 \\ 150 \\ 100 \\ 150 \\ 100 \\ 80 \\ 100 \end{gathered}$	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & 0^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$				

NOTE: (1) Output voltage swings are measured between the output and power-supply rails.

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.
Boldface limits apply over the temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER		CONDITION	OPA345NA, UA OPA2345EA, UA OPA4345EA, UA			UNITS			
		MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage Over Temperature vs Temperature vs Power Supply Over Temperature Channel Separation, dc $f=1 \mathrm{kHz}$	$\begin{array}{r} V_{\mathrm{OS}} \\ \mathrm{dV}_{\mathrm{OS}} / \mathrm{dT} \\ \text { PSRR } \end{array}$		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 0.2 \\ \pm 0.8 \\ \pm 3 \\ 30 \\ \\ 0.2 \\ 130 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1.2 \\ \\ 200 \\ 250 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current	I_{B} I_{os}			± 0.2 See Ty ± 0.2		pA pA pA			
NOISE Input Voltage Noise Input Voltage Noise Density Current Noise Density	e_{n} i_{n}	$\begin{aligned} & f= 0.1 \text { to } 50 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 8 \\ 30 \\ 0.5 \end{gathered}$		μ Vrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$			
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Ratio Over Temperature Common-Mode Rejection Ratio Over Temperature	$V_{C M}$ CMRR CMRR CMRR	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+5.5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+2.7 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=+2.7 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} -0.3 \\ 76 \\ 74 \\ 70 \\ 68 \\ 66 \\ 64 \\ \hline \end{gathered}$	$\begin{aligned} & 92 \\ & 84 \\ & 80 \end{aligned}$	$(\mathrm{V}+)+0.3$	V dB dB dB dB dB dB			
INPUT IMPEDANCE Differential Common-Mode				$\begin{aligned} & 10^{13}\| \| 3 \\ & 10^{13} \\| 6 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$			
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature	A_{OL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 10 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 10 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 400 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-400 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, 400 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<\left(\mathrm{V}_{+}\right)-400 \mathrm{mV} \end{aligned}$	$\begin{gathered} 104 \\ 100 \\ 96 \\ 90 \end{gathered}$	$\begin{aligned} & 122 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$			
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise	$\begin{array}{r} \text { GBW } \\ \text { SR } \\ \\ \text { THD }+N \end{array}$	$C_{L}=100 p F$ $\begin{gathered} \mathrm{G}=5,2 \mathrm{~V} \text { Output Step } \\ \mathrm{G}=5,2 \mathrm{~V} \text { Output Step } \\ \mathrm{V}_{\text {IV }} \cdot \mathrm{G}=\mathrm{V}_{\mathrm{S}} \\ \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=5, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 3 \\ 2 \\ 1.5 \\ 1.6 \\ 2.5 \\ 0.006 \end{gathered}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ \%			
OUTPUT Voltage Output Swing from Rail ${ }^{(1)}$ Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive	$\stackrel{\mathrm{I}_{\mathrm{SC}}}{\mathrm{C}_{\mathrm{LOAD}}}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 96 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 104 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq \mathbf{1 0 0 \mathrm { dB }} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 96 \mathrm{~dB} \\ \mathbf{R}_{\mathrm{L}}=\mathbf{5 k} \Omega, \mathrm{A}_{\mathrm{OL}} \geq \mathbf{9 0 d B} \end{gathered}$		$\begin{gathered} 1 \\ 3 \\ 40 \\ \\ \pm 15 \\ \text { Typical Cu } \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 400 \\ 400 \end{gathered}$	mV mV mV mV mV mA			
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	V_{S} I_{Q}	$\mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$	2.7	$\begin{gathered} 2.5 \text { to } 5.5 \\ 150 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 250 \\ & 300 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \end{gathered}$			
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface Mount MSOP-8 Surface Mount SO-8 Surface Mount TSSOP-14 Surface Mount SO-14 Surface Mount	$\theta_{\text {JA }}$		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$			

NOTE: (1) Output voltage swings are measured between the output and power-supply rails.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only. Functional operation of the device at these conditions, or beyond the specified operating conditions, is not implied. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current-limited to 10 mA or less. (3) Short-circuit to ground, one amplifier per package.

- ELECTROSTATIC (4) DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(1)}$	TRANSPORT MEDIA
OPA344NA OPA344UA OPA344PA	$\begin{gathered} \text { SOT23-5 } \\ " \\ \text { SO-8 } \\ " \\ \text { 8-Pin Dip } \end{gathered}$	$\begin{gathered} 331 \\ " \\ 182 \\ " \\ 006 \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " to }+85^{\circ} \mathrm{C} \end{gathered}$	B44 $"$ OPA344UA $"$ OPA344PA	OPA344NA/250 OPA344NA/3K OPA344UA OPA344UA/2K5 OPA344PA	Tape and Reel Tape and Reel Rails Tape and Reel Rails
OPA2344EA OPA2344UA OPA2344PA	$\begin{gathered} \text { MSOP-8 } \\ " \\ \text { SO-8 } \\ " \\ \text { 8-Pin DIP } \end{gathered}$	$\begin{gathered} 337 \\ " \\ 182 \\ " \\ 006 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	C 44 $"$ OPA2344UA $"$ OPA2344PA	OPA2344EA/250 OPA2344EA/2K5 OPA2344UA OPA2344UA/2K5 OPA2344PA	Tape and Reel Tape and Reel Rails Tape and Reel Rails
$\begin{gathered} \text { OPA4344EA } \\ " \\ \text { OPA4344UA } \\ " \\ \text { OPA4344PA } \end{gathered}$	$\begin{gathered} \text { TSSOP-14 } \\ \text { SO-14 } \\ " \\ \text { 14-Pin DIP } \end{gathered}$	$\begin{gathered} 357 \\ " \\ 235 \\ " \\ 010 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { OPA4344EA } \\ " \\ \text { OPA4344UA } \\ " \\ \text { OPA4344PA } \end{gathered}$	OPA4344EA/250 OPA4344EA/2K5 OPA4344UA OPA4344UA/2K5 OPA4344PA	Rails Tape and Reel Rails Tape and Reel Rails
OPA345NA OPA345UA "	SOT23-5 SO-8	$\begin{gathered} 331 \\ " \\ 182 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	A45 OPA345UA	$\begin{gathered} \text { OPA345NA/250 } \\ \text { OPA345NA/3K } \\ \text { OPA345UA } \\ \text { OPA345UA/2K5 } \end{gathered}$	Tape and Reel Tape and Reel Rails Tape and Reel
$\begin{gathered} \text { OPA2345EA } \\ " \\ \text { OPA2345UA } \\ =1 \end{gathered}$	$\begin{gathered} \text { MSOP-8 } \\ \text { " } \\ \text { SO-8 } \\ \hline \end{gathered}$	$\begin{gathered} 337 \\ " \\ 182 \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{B45} \\ " \\ \text { OPA2345UA } \end{gathered}$	$\begin{gathered} \text { OPA2345EA/250 } \\ \text { OPA2345EA/2K5 } \\ \text { OPA2345UA } \\ \text { OPA2345UA/2K5 } \end{gathered}$	Tape and Reel Tape and Reel Rails Tape and Reel
$\begin{gathered} \text { OPA4345EA } \\ " \\ \text { OPA4345UA } \end{gathered}$	$\begin{gathered} \text { TSSOP-14 } \\ \text { " } \\ \text { SO-14 } \\ \hline " \end{gathered}$	$\begin{gathered} 357 \\ " \\ 235 \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { OPA4345EA } \\ \text { " } \\ \text { OPA4345UA } \end{gathered}$	OPA4345EA/250 OPA4345EA/2K5 OPA4345UA OPA4345UA/2K5	Tape and Reel Tape and Reel Rails Tape and Reel

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA344UA/2K5" will get a single 2500-piece Tape and Reel.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

QUIESCENT CURRENT AND SHORT-CIRCUIT CURRENT vs TEMPERATURE

INPUT BIAS CURRENT

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

QUIESCENT CURRENT PRODUCTION DISTRIBUTION

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

LARGE-SIGNAL STEP RESPONSE: OPA344
$G=+1, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

$5 \mu \mathrm{~s} / \mathrm{div}$

SMALL-SIGNAL STEP RESPONSE: OPA344
$G=+1, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

$5 \mu \mathrm{~s} / \mathrm{div}$

LARGE-SIGNAL STEP RESPONSE: OPA345
$G=+5, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

$5 \mu \mathrm{~s} / \mathrm{div}$

APPLICATIONS INFORMATION

OPA344 series op amps are unity gain stable and can operate on a single supply, making them highly versatile and easy to use. OPA345 series op amps are optimized for applications requiring higher speeds with gains of 5 or greater.
Rail-to-rail input and output swing significantly increases dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA344 in unity-gain configuration. Operation is from $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ with a $10 \mathrm{k} \Omega$ load connected to $\mathrm{V}_{\mathrm{S}} / 2$. The input is a $5 \mathrm{Vp}-\mathrm{p}$ sinusoid. Output voltage is approximately $4.997 \mathrm{Vp}-\mathrm{p}$.

Power supply pins should be by passed with 0.01 pF ceramic capacitors.

OPERATING VOLTAGE

OPA344 and OPA345 series op amps are fully specified and guaranteed from +2.7 V to +5.5 V . In addition, many specifications apply from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Performance Curves.

RAIL-TO-RAIL INPUT

The input common-mode voltage range of the OPA344 and OPA345 series extends 300 mV beyond the supply rails. This is achieved with a complementary input stage-an N channel input differential pair in parallel with a P-channel differential pair (see Figure 2). The N -channel pair is active for input voltages close to the positive rail, typically $(\mathrm{V}+)$ 1.3 V to 300 mV above the positive supply, while the P channel pair is on for inputs from 300 mV below the negative supply to approximately $(\mathrm{V}+)-1.3 \mathrm{~V}$. There is a small transition region, typically $(\mathrm{V}+)-1.5 \mathrm{~V}$ to $(\mathrm{V}+)-1.1 \mathrm{~V}$, in which both pairs are on. This 400 mV transition region can vary 300 mV with process variation. Thus, the transition region (both stages on) can range from ($\mathrm{V}+$) -1.8 V to $(\mathrm{V}+)$ -1.4 V on the low end, up to $(\mathrm{V}+)-1.2 \mathrm{~V}$ to $(\mathrm{V}+)-0.8 \mathrm{~V}$ on the high end. Within the 400 mV transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation outside this region. For more information on designing with rail-to-rail input op amps, see Figure 3 "Design Optimization with Rail-to-Rail Input Op Amps."

FIGURE 1. Rail-to-Rail Input and Output.

FIGURE 2. Simplified Schematic.

DESIGN OPTIMIZATION WITH RAIL-TO-RAIL INPUT OP AMPS

Rail-to-rail op amps can be used in virtually any op amp configuration. To achieve optimum performance, however, applications using these special double-input-stage op amps may benefit from consideration of their special behavior.

In many applications, operation remains within the com-mon-mode range of only one differential input pair. However some applications exercise the amplifier through the transition region of both differential input stages. Although the two input stages are laser trimmed for excellent matching, a small discontinuity may occur in this transition. Careful selection of the circuit configuration, signal levels and biasing can often avoid this transi-

With a unity-gain buffer, for example, signals will traverse this transition at approximately 1.3 V below $\mathrm{V}+$ supply and may exhibit a small discontinuity at this point.
The common-mode voltage of the non-inverting amplifier is equal to the input voltage. If the input signal always remains less than the transition voltage, no discontinuity will be created. The closed-loop gain of this configuration can still produce a rail-to-rail output.
Inverting amplifiers have a constant common-mode voltage equal to V_{B}. If this bias voltage is constant, no discontinuity will be created. The bias voltage can generally be chosen to avoid the transition region.
tion region.

FIGURE 3. Design Optimization with Rail-to-Rail Input Op Amps.

COMMON-MODE REJECTION

The CMRR for the OPA344 and OPA345 is specified in several ways so the best match for a given application may be used. First, the CMRR of the device in the common-mode range below the transition region $\left(\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V}\right)$ is given. This specification is the best indicator of the capability of the device when the application requires use of one of the differential input pairs. Second, the CMRR at $V_{S}=5.5 \mathrm{~V}$ over the entire common-mode range is specified. Third, the CMRR at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ over the entire common-mode range is provided. These last two values include the variations seen through the transition region.

INPUT VOLTAGE BEYOND THE RAILS

If the input voltage can go more than 0.3 V below the negative power supply rail (single-supply ground), special precautions are required. If the input voltage goes sufficiently negative, the op amp output may lock up in an inoperative state. A Schottky diode clamp circuit will prevent this—see Figure 4. The series resistor prevents excessive current (greater than 10 mA) in the Schottky diode and in the internal ESD protection diode, if the input voltage can exceed the positive supply voltage. If the signal source is limited to less than 10 mA , the input resistor is not required.

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving 600Ω loads connected to any potential
between $\mathrm{V}+$ and ground. For light resistive loads (>50k Ω), the output voltage can typically swing to within 1 mV from supply rail. With moderate resistive loads $(2 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega)$, the output can swing to within a few tens of milli-volts from the supply rails while maintaining high open-loop gain. See the typical performance curve "Output Voltage Swing vs Output Current."

FIGURE 4. Input Current Protection for Voltages Exceeding the Supply Voltage.

CAPACITIVE LOAD AND STABILITY

The OPA344 in a unity-gain configuration and the OPA345 in gains greater than 5 can directly drive up to 250 pF pure capacitive load. Increasing the gain enhances the amplifier's ability to drive greater capacitive loads. See the typical
performance curve "Small-Signal Overshoot vs Capacitive Load." In unity-gain configurations, capacitive load drive can be improved by inserting a small (10Ω to 20Ω) resistor, R_{S}, in series with the output, as shown in Figure 5. This significantly reduces ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a dc error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_{S} / R_{L}, and is generally negligible.

DRIVING A/D CONVERTERS

The OPA344 and OPA345 series op amps are optimized for driving medium-speed sampling A/D converters. The OPA344 and OPA345 op amps buffer the A/D's input capacitance and resulting charge injection while providing signal gain.
Figures 6 shows the OPA344 in a basic noninverting configuration driving the ADS7822. The ADS7822 is a 12-bit, micro-power sampling converter in the MSOP-8 package. When used with the low-power, miniature packages of the OPA344, the combination is ideal for space-limited, lowpower applications. In this configuration, an RC network at the A/D's input can be used to filter charge injection.
Figure 7 shows the OPA2344 driving an ADS7822 in a speech bandpass filtered data acquisition system. This small, low-cost solution provides the necessary amplification and signal conditioning to interface directly with an electret microphone. This circuit will operate with $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$ to +5 V with less than $500 \mu \mathrm{~A}$ quiescent current.

FIGURE 5. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive.

FIGURE 6. OPA344 in Noninverting Configuration Driving ADS7822.

FIGURE 7. Speech Bandpass Filtered Data Acquisition System.

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OPA2344EA/250	ACTIVE	MSOP	DGK	8	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344EA/250G4	ACTIVE	MSOP	DGK	8	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344EA/2K5	ACTIVE	MSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344EA/2K5G4	ACTIVE	MSOP	DGK	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344PA	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	N/A for Pkg Type
OPA2344PAG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA2344UA	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344UA/2K5G4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2344UAG4	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345EA/250	ACTIVE	MSOP	DGK	8	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345EA/250G4	ACTIVE	MSOP	DGK	8	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345EA/2K5G4	ACTIVE	MSOP	DGK	8		TBD	Call TI	Call TI
OPA2345UA	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345UA/2K5G4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA2345UAG4	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344NA/250	ACTIVE	SOT-23	DBV	5	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344NA/250G4	ACTIVE	SOT-23	DBV	5	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344NA/3K	ACTIVE	SOT-23	DBV	5	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344PA	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA344PAG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA344UA	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OPA344UA/2K5G4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA344UAG4	ACTIVE	SOIC	D	8	100	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
OPA345NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
OPA345NA/250G4	ACTIVE	SOT-23	DBV	5	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA345NA/3KG4	ACTIVE	SOT-23	DBV	5		TBD	Call TI	Call TI
OPA345UA	ACTIVE	SOIC	D	8	100	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
OPA345UAG4	ACTIVE	SOIC	D	8	100	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA4344EA/250	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
OPA4344EA/250G4	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
OPA4344EA/2K5	ACTIVE	TSSOP	PW	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
OPA4344EA/2K5G4	ACTIVE	TSSOP	PW	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OPA4344PA	ACTIVE	PDIP	N	14	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4344PAG4	ACTIVE	PDIP	N	14	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4344UA	ACTIVE	SOIC	D	14	58	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	Call TI	Level-2-260C-1 YEAR
OPA4344UA/2K5	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	Call TI	Level-2-260C-1 YEAR
OPA4344UA/2K5G4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	Call TI	Level-2-260C-1 YEAR
OPA4344UAG4	ACTIVE	SOIC	D	14	58	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	Call TI	Level-2-260C-1 YEAR
OPA4345EA/250	ACTIVE	TSSOP	PW	14	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA4345EA/250G4	ACTIVE	TSSOP	PW	14	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA4345UA	ACTIVE	SOIC	D	14	58	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
OPA4345UA/2K5G4	ACTIVE	SOIC	D	14		TBD	Call TI	Call TI
OPA4345UAG4	ACTIVE	SOIC	D	14	58	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb - Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPA2344EA/250 | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| OPA2344EA/2K5 | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| OPA2344UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA2345EA/250 | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| OPA2345UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA344NA/250 | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.2 | 3.1 | 1.39 | 4.0 | 8.0 | Q3 |
| OPA344NA/3K | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.2 | 3.1 | 1.39 | 4.0 | 8.0 | Q3 |
| OPA344UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA345NA/250 | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.2 | 3.1 | 1.39 | 4.0 | 8.0 | Q3 |
| OPA4344EA/250 | TSSOP | PW | 14 | 250 | 180.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| OPA4344EA/2K5 | TSSOP | PW | 14 | 2500 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| OPA4344UA/2K5 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| OPA4345EA/250 | TSSOP | PW | 14 | 250 | 180.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |

INSTRUMENTS
www.ti.com

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2344EA/250	MSOP	DGK	8	250	184.0	184.0	50.0
OPA2344EA/2K5	MSOP	DGK	8	2500	346.0	346.0	29.0
OPA2344UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA2345EA/250	MSOP	DGK	8	250	184.0	184.0	50.0
OPA2345UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA344NA/250	SOT-23	DBV	5	250	190.5	212.7	31.8
OPA344NA/3K	SOT-23	DBV	5	3000	190.5	212.7	31.8
OPA344UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA345NA/250	SOT-23	DBV	5	250	190.5	212.7	31.8
OPA4344EA/250	TSSOP	PW	14	250	184.0	184.0	50.0
OPA4344EA/2K5	TSSOP	PW	14	2500	346.0	346.0	29.0
OPA4344UA/2K5	SOIC	D	14	2500	346.0	346.0	33.0
OPA4345EA/250	TSSOP	PW	14	250	190.5	212.7	31.8

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

