- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- $5-\Omega$ Switch Connection Between Two Ports
- Rail-to-Rail Switching on Data I/O Ports
- Ioff Supports Partial-Power-Down Mode Operation
- B-Port Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)

description/ordering information

The SN74CBTLV16800 provides 20 bits of high-speed bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.
The device is organized as dual 10 -bit bus switches with separate output-enable ($\overline{\mathrm{OE}}$) inputs. It can be used as two 10 -bit bus switches or one 20 -bit bus switch. When $\overline{\mathrm{OE}}$ is low, the associated 10 -bit bus switch is on, and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open, the high-impedance state exists between the two ports, and port B is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.

This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tube	SN74CBTLV16800DL	CBTLV16800
		Tape and reel	SN74CBTLV16800DLR	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TSSOP - DGG	Tape and reel	SN74CBTLV16800GR	CBTLV16800
	TVSOP - DGV	Tape and reel	SN74CBTLV16800VR	CN800

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SN74CBTLV16800

LOW-VOLTAGE 20-BIT FET BUS SWITCH

FUNCTION TABLE
(each 10-bit bus switch)

INPUT $\overline{\mathrm{OE}}$	FUNCTION
L	A port = B port
H	A port = Z B port = BIASV

logic diagram (positive logic)

simplified schematic, each FET switch

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\qquad
Supply voltage range, V_{CC}
-0.5 V to 4.6 V
Bias voltage range, BIASV
-0.5 V to 4.6 V

Continuous channel current ... 128 mA

Package thermal impedance, θ_{JA} (see Note 2): DGG package $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $58^{\circ} \mathrm{C} / \mathrm{W}$
DL package $63^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $T_{\text {stg }}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

				MIN

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \ddagger	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
II		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	$\mu \mathrm{A}$
$l_{\text {off }}$	A port	$V_{C C}=0$,	V_{I} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V				10	$\mu \mathrm{A}$
10		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	BIASV $=2.4 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0, \quad \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$		0.25		mA
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{l} \mathrm{O}=0$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			10	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{CC} \mathrm{C}^{\S}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input at 3 V ,	Other inputs at V_{CC} or GND			300	$\mu \mathrm{A}$
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V} \text { or } 0$				4.5		pF
$\mathrm{C}_{\mathrm{io} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\text { Switch off, } \quad \text { BIASV = Open }$			6.5		pF
ron ${ }^{\text {II }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{l}}=0$	I $=64 \mathrm{~mA}$		5	9	Ω
		I $=24 \mathrm{~mA}$			5	9		
		$\mathrm{V}_{\mathrm{l}}=1.7 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		25	35		
		$V_{C C}=3 \mathrm{~V}$	$V_{l}=0$	$\mathrm{I}=64 \mathrm{~mA}$		5	7	
		$\mathrm{I}=24 \mathrm{~mA}$			5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \mathrm{I}=15 \mathrm{~mA}$		8	15			

[^0]§ This is the increase in supply current for each input that is at the specified voltage level, rather than $V_{C C}$ or GND.
II Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SN74CBTLV16800

LOW-VOLTAGE 20-BIT FET BUS SWITCH

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	TEST CONDITIONS	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \mathrm{V} C=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	
${ }_{\text {tpd }}{ }^{\dagger}$		A or B	B or A		0.15		0.25	ns
tPZH	BIASV = GND	$\overline{\mathrm{OE}}$	A or B	2.9	7.7	2.2	5.5	ns
tPZL	$B I A S V=3 V$			2.8	6.4	2.1	5.3	
tPHZ	BIASV = GND	$\overline{O E}$	A or B	1.4	6.8	2.6	7.6	ns
tplZ	BIASV $=3 \mathrm{~V}$			1.3	4.2	1.5	5.1	

†The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

V_{CC}	C_{L}	R_{L}	V_{Δ}
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	500Ω	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and tPHZ^{2} are the same as $\mathrm{t}_{\text {dis. }}$
F. $t_{P Z L}$ and $\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ are the same as t_{en}.
G. $\mathrm{t}_{\mathrm{PLH}}$ and tPHL are the same as t_{pd}.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

GQL (R-PBGA-N56)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. MicroStar Junior ${ }^{\text {TM }}$ BGA configuration.
D. Falls within JEDEC MO-225 variation BA.
E. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

MicroStar Junior is a trademark of Texas Instruments.

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

