- Eight D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Buffered Control Inputs
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 8 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops of the'F374 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs.
A buffered output enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output enable ($\overline{\mathrm{OE}})$ input does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN74F374 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54F374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F374 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			$\begin{gathered} \hline \text { OUTPUT } \\ \mathrm{Q} \end{gathered}$
$\overline{\mathrm{OE}}$	CLK	D	
L	\uparrow	H	H
L	\uparrow	L	L
L	Hor L	x	Q_{0}
H	X	x	z

logic symbol \dagger

logic diagram (positive logic)

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.
recommended operating conditions

		SN54F374			SN74F374			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-3			-3	mA
IOL	Low-level output current			20			24	mA
T_{A}	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54F374, SN74F374
 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS

SDFSO77A - D2932, MARCH 1987 - REVISED OCTOBER 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 2: I ICCZ is measured with $\overline{\mathrm{OE}}$ at 4.5 V and all other inputs grounded.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN5	374	SN7	374	
									UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f clock }}$	Clock frequency		0	100	0	60	0	70	MHz
	Pulse duration	CLK high	7		7		7		
tw		CLK low	6		6		6		
	Setup time data before CLK \uparrow	High	2		2.5		2		
	Setup tire, data before CLK	Low	2		2		2		
		High	2		2		2		
th	Hold time, data after CLK	Low	2		2.5		2		ns

SDFS077A - D2932, MARCH 1987 - REVISED OCTOBER 1993

switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline{ }^{\prime} \mathrm{F} 374 \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \dagger \end{aligned}$				UNIT
						SN5	374	SN74	374	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			100			60		70		MHz
tPLH	CLK	Q	3.2	6.1	8.5	3.2	10.5	3.2	10	ns
tPHL			3.2	6.1	8.5	3.2	11	3.2	10	
tPZH	$\overline{\mathrm{OE}}$	Q	1.2	8.6	11.5	1.2	14	1.2	12.5	ns
tPZL			1.2	5.4	7.5	1.2	10	1.2	8.5	
tPHZ	$\overline{\mathrm{OE}}$	Q	1.2	4.9	7	1.2	8	1.2	8	ns
tPLZ			1.2	3.9	5.5	1.2	7.5	1.2	6.5	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 3: Load circuits and waveforms are shown in Section 1.

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9759001Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-9759001QRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
5962-9759001QRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/A for Pkg Type
5962-9759001QSA	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
5962-9759001QSA	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
JM38510/34105B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
JM38510/34105B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
JM38510/34105BRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/34105BRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/34105BSA	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
JM38510/34105BSA	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
SN54F374J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
SN54F374J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
SN74F374DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74F374DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74F374DBR	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DBR	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DBRE4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DBRE4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DW	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DW	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWE4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWE4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWR	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWR	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWRE4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374DWRE4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74F374N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74F374N3	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI
SN74F374N3	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI
SN74F374NE4	ACTIVE	PDIP	N	20	20	Pb-Free	CU NIPDAU	N/ A for Pkg Type

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
	(RoHS)							
SN74F374NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74F374NSR	ACTIVE	SO	NS	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74F374NSR	ACTIVE	SO	NS	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374NSRE4	ACTIVE	SO	NS	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74F374NSRE4	ACtive	SO	NS	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54F374FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54F374FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54F374J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54F374J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54F374W	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
SNJ54F374W	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

4040180-4/D 07/03
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G2O)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers
Data Converters
DSP
Interface
Logic
Power Mgmt
Microcontrollers
Low Power Wireless

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

