

SN5496, SN7496, SN54LS96, SN74LS96

5-Bit Shift Registers

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input while the preset is inactive (low). Clearing is independent of the level of the clock input. The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN5496, SN54LS96, SN7496, SN74LS96 5.BIT SHIFT REGISTERS

SDLS946 - MARCH 1974 - REVISED MARCH 1988

N-Bit Serial-To-Parallel Converter SN5496, SN54LS96 . . . J OR W PACKAGE SN7496 ... N PACKAGE N-Bit Parallel-To-Serial Converter SN74LS96 . . . D OR N PACKAGE (TOP VIEW) N-Bit Storage Register TYPICAL CLK []1 TYPE PROPAGATION TYPICAL A 🗌 2 DELAY TIME POWER DISSIPATION B 🗌 3 **'96** 25 ns 240 mW 13 0 0C C 🗌 4 'LS96 25 ns 60 mW Vcc □₅ 12 description 11 0 0D D|]6 E] 7 These shift registers consist of five R-S master-slave 9 SER PRE 8

flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input while the preset is inactive (low). Clearing is independent of the level of the clock input.

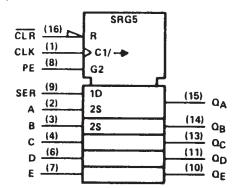
The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

INPUTS								OUTPUTS						
	PRESET		PF	IES	ET					-				
	ENABLE		8	С	D	E	CLOCK	SERIAL	QA.	0 _B	٥c	QD	QD	
L	L	х	х	х	x	х	x	X	L	L	L	ι	L	
L	x	L	L	L	L	Ł	x	x	L	L	L	L	L	
н	н	н	н	н	н	н	x	x	н	н	н	н	н	
н	н	Ł	ι	L	L	Ł	L	x	QA0	0 _{B0}	a _{co}	apo	Q _{E0}	
н	н	н	L	н	L	н	L	x	н	0 ₈₀	н	Q _{D0}	н	
н	L	x	x	x	x	X	L	×	0A0	0 ₈₀	Q _{C0}	Q _{D0}	QEO	
н	ι	x	х	х	х	x	1	н	н		0 _{Bn}			
н	L	x	x	х	х	x	1	L	L		Q _{Bn}			

FUNCTION TABLE

H = high level (steady state), L = low level (steady state)

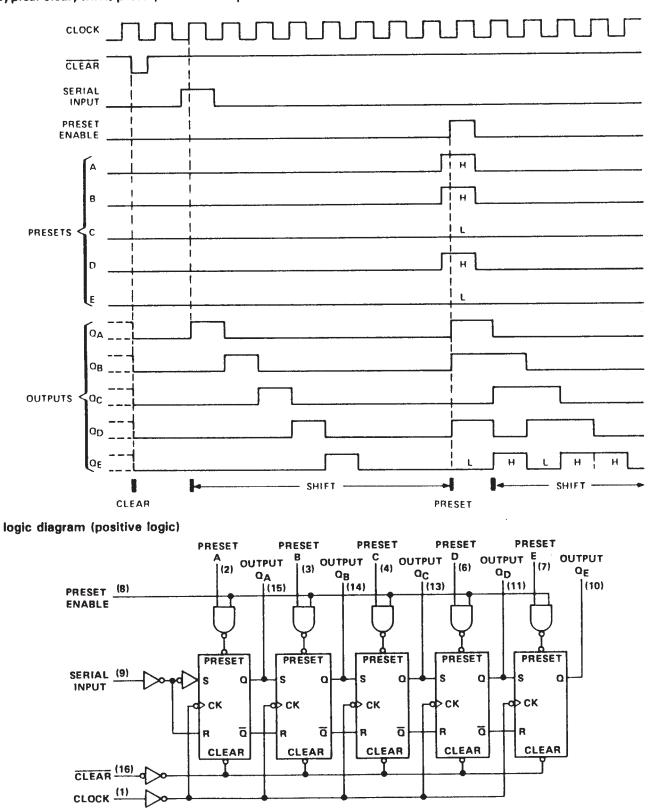

X = irrelevant (any input, including transistion)

t = transistion from low to high level

 Ω_{AO} , Ω_{BO} , etc. = the level of Ω_A , Ω_B , etc. respectively before the indicated steadystate input conditions were established.

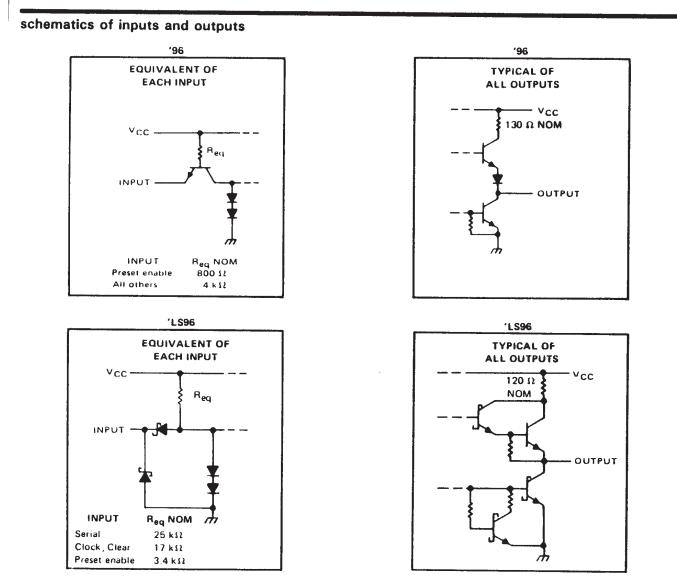
 $\Omega_{An},\,\Omega_{Bn}$ etc = the level of $\Omega_A,\,\Omega_B,$ etc, respectively before the most recent \dagger transistion of the clock.

logic symbol[†]



¹This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texes Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SN5496, SN54LS96, SN7496, SN74LS96 5-BIT SHIFT REGISTERS

typical clear, shift, preset, and shift sequences

SN5496, SN54LS96, SN7496, SN74LS96 5-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	···· 7 V
Input voltage (see Note 2): '96	
LS96	· · · · · · · · · · · · · · · · · 7 V
Operating free-air temperature: SN54'	55°C to 125°C
SN74'	0°C to 70°C
Storage temperature range	

NOTES: 1. Voltage values are with respect to network ground terminal.

2. Input voltage must be zero or positive with respect to network ground terminal.

SN5496, SN7496 **5-BIT REGISTERS**

recommended operating conditions

		SN5496		SN7498			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			16	[16	mA
Clock frequency, fclock	0		10	0		10	MHz
Width of clock input pulse, tw(clock)	35			35			ns
Width of preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{su} (see Figure 1)	30			30			ns
Serial input hold time, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS [†]		SN5496				UNIT		
FANAMETEN		1631.00	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT		
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage		,	······································			0.8			0.8	V
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{1H} = 2 V, I _{OH} = -400 μA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{1H} = 2 V, IOL = 16 mA		0.2	0.4		0.2	0.4	v
1	Input current at maximum	V _{CC} = MAX,	V ₁ = 5.5 V	·		1			1	mA	
Чн	High-level input current	any input except preset enable	V _{CC} = MAX,	V1 = 2.4 V			40			40	μΑ
		preset enable		-			200			200	1
46	Low-level input current	any input except	V _{CC} = MAX,	VI ≈ 0.4 V			-1.6			-1.6	mA
		preset enable					-8			8	
los	Short-circuit output currer	nt [§]	V _{CC} = MAX		-20		-57	-18		-57	mA
Icc	Supply current		V _{CC} = MAX,	See Note 3		48	68		48	79	mA

[†]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. [§]Not more than one output should be shorted at a time.

NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	ΤΥΡ	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from clock	$C_{I} = 15 pF$,		25	40	ns
tpHL Propagation delay time, high-to-low-level output from clock	$R_{\rm L} = 400 \Omega_{\rm L}$		25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable	See Figure 1		28	35	ns
tpHL Propagation delay time, high-to-low-level output from clear	See rigure r			55	ns

recommended operating conditions

	S	SN54LS96			SN74LS96			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-400	[-400	μA	
Low-level output current, IOL			4	1		8	mA	
Clock frequency, fclock	0		25	0		25	MHz	
Width of clock input pulse, tw(clock)	20			20			ns	
Width of preset and clear input pulse, t _W	30			30			ns	
Serial input setup time, t _{setup} (see Figure 1)	30	· · · · ·		30			ns	
Serial input hold time, thold (see Figure 1)	0			0			ns	
Operating free-air temperature, TA	-55		125	0		70	°C	

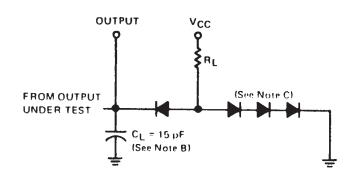
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]			SN54LS96			SN74LS96				
			TEST CONDITIONS.				TYPI	MAX	MIN	TYP‡	MAX		
$v_{\rm IH}$	High-level input volt	age		2			2			V			
VIL	Low-level input volta	age				1		0.7			0.8	V	
VIK	Input clamp voltage		V _{CC} = MIN,	lj =18 mA				-1.5			-1.5	V	
∨он	High-level output vo	itage	V _{CC} = MIN, VIL = VIL max	V _{IH} = 2 V, , I _{OH} =400 μ/	٩	2.5	3.5		2.7	3.5		v	
VOL Low-level output voltage		V _{CC} = MIN,	VIH = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v		
*0L			VIL = VIL max	۲	IOL = 8 mA				0.35	0.35	0.5		
	Input current at maximum	Preset enable	Vcc = MAX	V _{CC} = MAX, V _I = 7 V				0.5			0.5	mA	
Ц 	input voltage	All others						0.1			0.1		
hu	High-level	Preset enable	Vcc = MAX,	Vi = 2.7 V				100			100	μA	
- in	input current	All others						20			20		
1	Low-level	Preset enable	Vcc = MAX,	V. = 0.4 V				-2			-2	mA	
ЧL	input current	All others					-0.4			-0.4			
los	Short-circuit output	nort-circuit output current [§] V _{CC} = MAX				-20		100	-20		100	mA	
Icc	Supply current		V _{CC} = MAX,	See Note 3		1	12	20		12	20	mA	

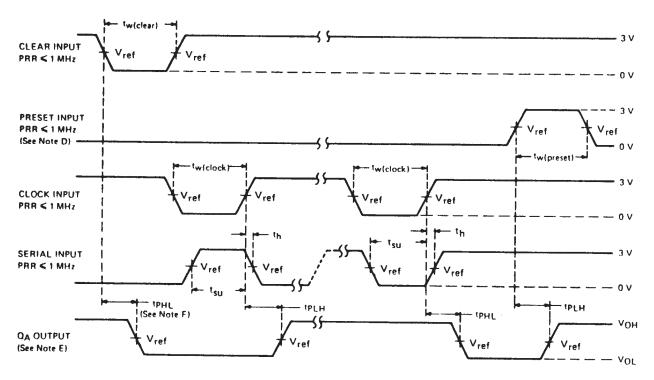
For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. All typical values are at $V_{CC} = 5 V$, $T_A = 25 C$

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	0 15.05		25	40	ns
tPHL Propagation delay time, high-to-low-level output from clock	$C_{L} = 15 \rho F,$ $R_{L} = 2 k \Omega,$		25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable	See Figure 1		28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear	une une i			55	ns



SN5496, SN54LS96, SN7496, SN74LS96 5-BIT SHIFT REGISTERS

VOLTAGE WAVEFORMS

NOTES: A. Input pulses are supplied by pulse generators having the following characteristics: duty cycle \leq 50%, Z_{out} \approx 50 Ω; for '96, t_r \leq 10 ns, t_f \leq 10 ns, and for 'LS96 t_r = 15 ns, t_f = 6 ns.

- B. CL includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

D. Preset may be tested by applying a high-level voltage to the individual preset inputs and pulsing the preset enable or by applying a high-level voltage to the preset enable and pulsing the individual preset inputs.

- E. QA output is illustrated. Relationship of serial input to other Q outputs is illustrated in the typical shift sequence.
- F. Outputs are set to the high level prior to the measurement of tpHL from the clear input.
- G. For '96, V_{ref} = 1.5 V; for 'LS96 V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN5496J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Available
SN7496N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Available
SN74LS96D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	Samples Not Available
SN74LS96DR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS96J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS96N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS96N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	Samples Not Availabl
SNJ5496J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Availabl
SNJ5496W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	Samples Not Availabl

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

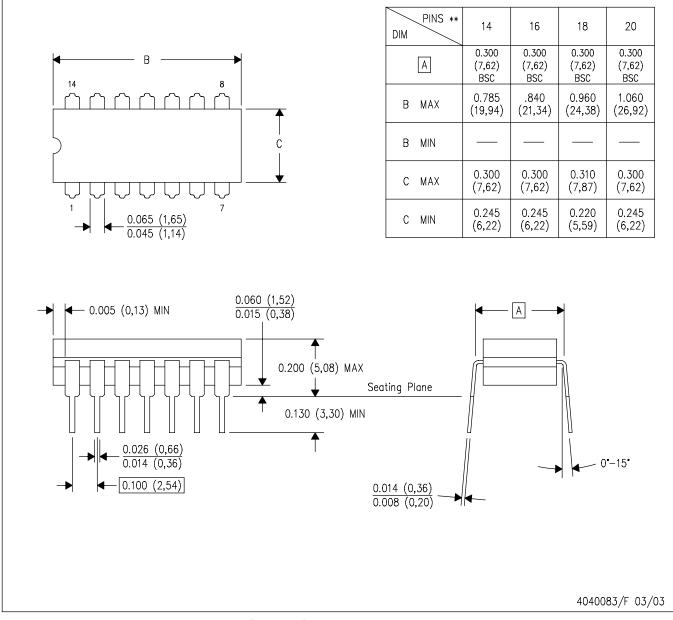
www.ti.com

7-Jun-2010

OTHER QUALIFIED VERSIONS OF SN5496, SN7496 :

Catalog: SN7496

Military: SN5496

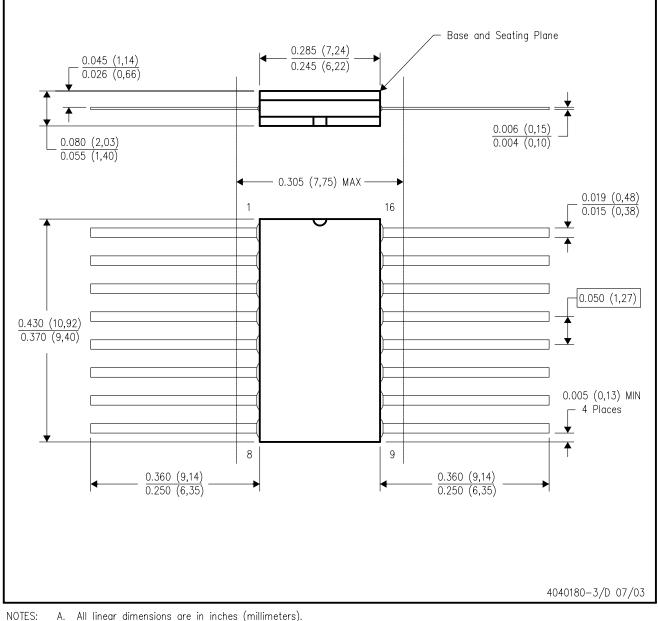

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

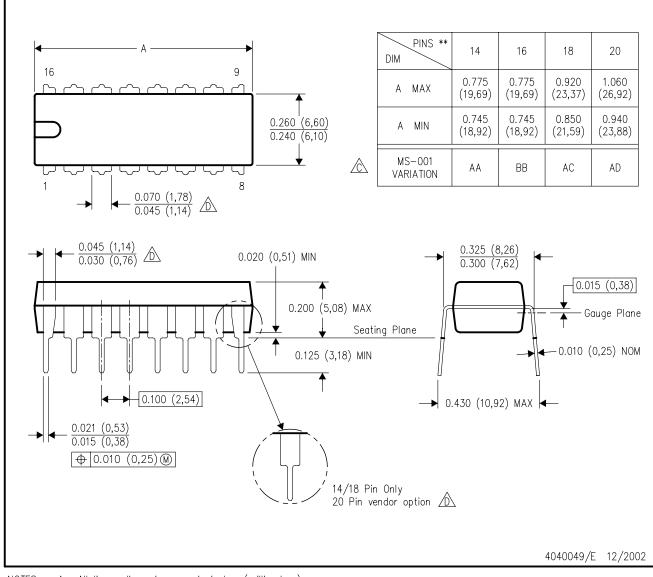


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

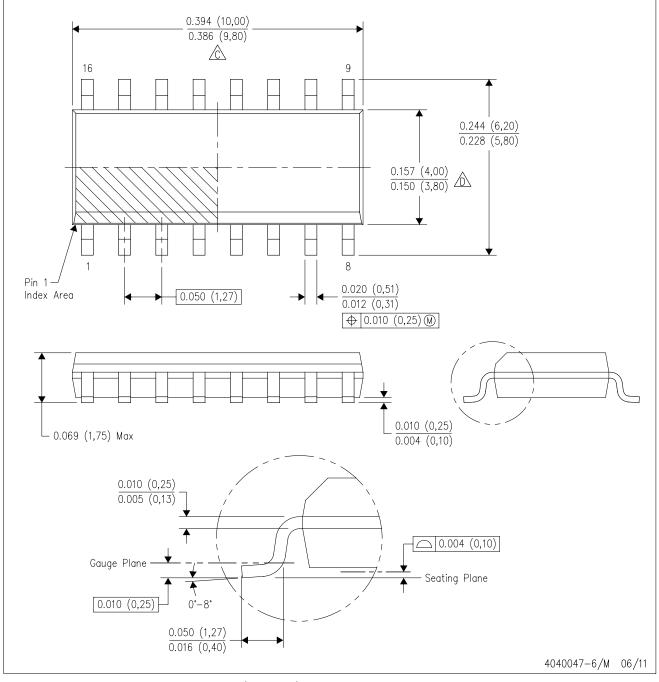
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated