SLLS131C - SEPTEMBER 1991 - REVISED MAY 1995

- Meets or Exceeds the Requirements of ANSI EIA/TIA-422-B, EIA/TIA-423-B, and RS-485
- Meets ITU Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirement 27 mA Max
- Common-Mode Input Voltage Range of –12 V to 12 V
- Input Sensitivity . . . ±200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 k Ω Min
- Operates From Single 5-V Supply

N OR NST PACKAGE (TOP VIEW) 16 🛮 V_{CC} 1B 1A **∏** 2 15 4B 1Y **∏** 3 **∏** 4A 14 13 **∏** 4Y 1.2EN **∏** 4 2Y 🛚 12 3,4EN 11 🛚 3Y 2A [2B 🗖 7 10 1 3A 3B GND [9

description

The SN75ALS175 is a monolithic quadruple differential line receiver with 3-state outputs. It is designed to meet the requirements of ANSI Standards EIA/TIA-422-B, EIA/TIA-423-B, and RS-485 and several ITU recommendations. Advanced low-power Schottky technology provides high speed without the usual power penalty. Each of the two pairs of receivers has a common active-high enable. The device features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -12 V to 12 V.

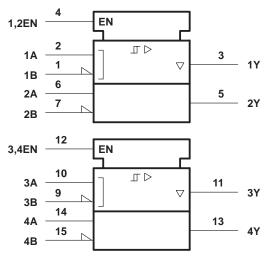
The SN75ALS175 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each receiver)

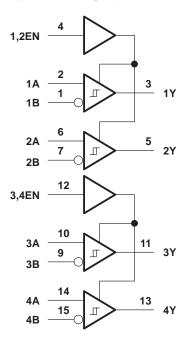
DIFFERENTIAL INPUTS A – B	ENABLES EN	OUTPUT Y
V _{ID} ≥ 0.2 V	Н	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	Н	?
$V_{ID} \le -0.2 V$	Н	L
X	L	Z
Open Circuit	Н	Н

H = high level, L = low level, ? = indeterminate,

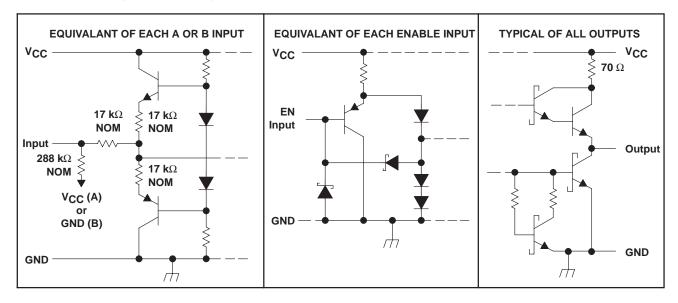
X = irrelevant, Z = high impedance (off)



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


[†] The NS package is only available left-ended taped and reeled (order device SN75ALS175NSLE).

logic symbol†



 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

SLLS131C - SEPTEMBER 1991 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I (A or B inputs)	±14 V
Differential input voltage, V _{ID} (see Note 2)	±14 V
Enable input voltage, V _I	
Low-level output current, IOL	50 mA
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{sta}	
Lead temperature 1,6 mm (1/16 inch) from case	for 10 seconds 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
N	1150 mW	9.2 mW/°C	736 mW
NS	625 mW	5.0 mW/°C	400 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
Common-mode input voltage, V _{IC}			±12	V
Differential input voltage, V _{ID}			±12	V
High-level enable-input voltage, VIH	2			V
Low-level enable-input voltage, V _{IL}			0.8	V
High-level output current, IOH			-400	μΑ
Low-level output current, I _{OL}			8	mA
Operating free-air temperature, T _A	0		70	°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

SLLS131C - SEPTEMBER 1991 - REVISED MAY 1995

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3)

	PARAMETER	TES	T CONDITIONS		MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage						200	mV
V _{IT} –	Negative-going input threshold voltage				-200‡			mV
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})					50		mV
٧IK	Enable-input clamp voltage	$I_{I} = -18 \text{ mA}$					-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV,	$I_{OH} = -400 \mu A$,	See Figure 1	2.7			V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA,	See Figure 1			0.45	V
loz	High-impedance-state output current	$V_0 = 0.4 \text{ V to } 2.4 \text{ V}$					±20	μΑ
1.	Line input coment	Other input at 0.1/	Con Note 2	V _I = 12 V			1	A
1	Line input current	Other input at 0 V,	See Note 3	V _I = -7 V			-0.8	mA
lн	High-level enable-input current	V _{IH(E)} = 2.7 V					20	μΑ
Ι _Ι L	Low-level enable-input current	V _{IL(E)} = 0.4 V					-100	μΑ
rį	Input resistance				12			kΩ
los	Short-circuit output current	V _O = 0		·	-15		-85	mA
loo	Suply ourrent (total package)	No load, Outputs enabled			16	24	m /\	
ICC Suply current (total package)		No load, Outputs disabled				18	27	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 3: Refer to ANSI Standard RS-485 for exact conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high- to low-level output	$V_{ID} = -2.5 \text{ V t}$	o 2.5 V,	9	18	27	ns
tPLH	Propagation delay time, low- to high-level output	$C_L = 15 pF$,	See Figure 2	9	18	27	ns
^t PZH	Output enable time to high level	C _I = 15 pF,	See Figure 3	4	12	18	ns
t _{PZL}	Output enable time to low level	о[= 15 рг,	See Figure 3	6	13	21	ns
^t PHZ	Output disable time from high level	C 15 pE	See Figure 3	10	21	27	ns
tPLZ	Output disable time from low level	$C_L = 15 pF$,	See Figure 5	8	15	25	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltage levels only.

PARAMETER MEASUREMENT INFORMATION

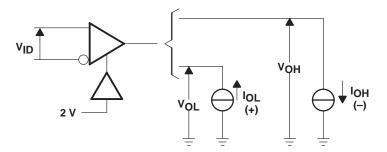
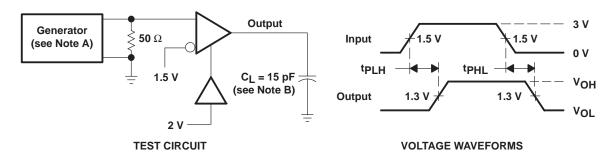
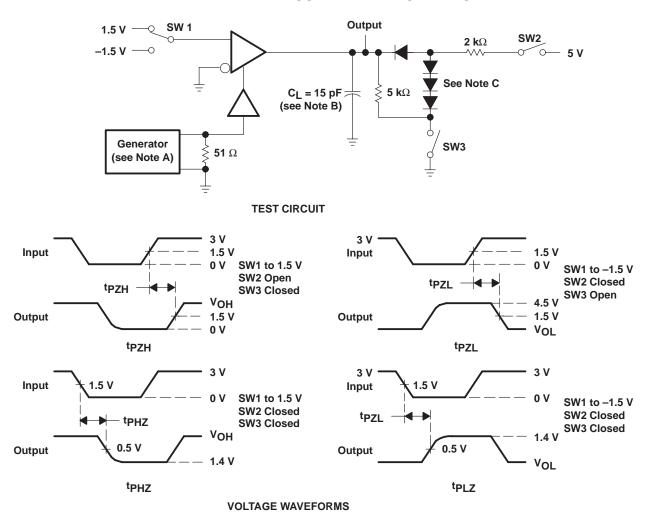



Figure 1. V_{OH} , V_{OL}



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_f = t_f = 6$ ns.

B. C_L includes probe and jig capacitance.

Figure 2. Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{\Gamma} = t_{f} = 6$ ns.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.

Figure 3. Enable and Disable Times

.com 18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75ALS175N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS175NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS175NSLE	OBSOLETE	SO	NS	16		TBD	Call TI	Call TI
SN75ALS175NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS175NSRE4	ACTIVE	SO	NS	16	2000 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

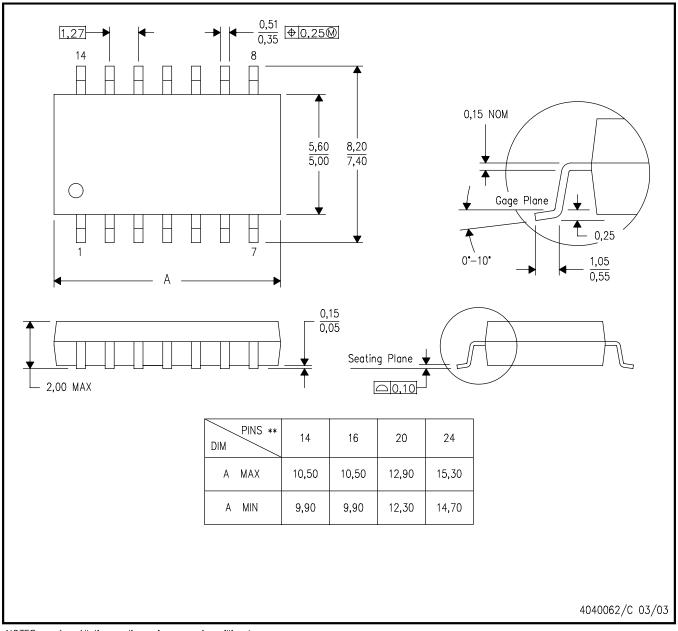
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated