

8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER

features

- 8-Bit Resolution
- Differential Linearity Error
 - ±0.3 LSB Typ, ±1 LSB Max (25°C)
 ±1 LSB Max
- Integral Linearity Error
 - − ±0.6 LSB, ±0.75 LSB Max (25°C)
 − ±1 LSB Max
- Maximum Conversion Rate of 40 Megasamples Per Second (MSPS) Max
- Internal Sample and Hold Function
- 5-V Single Supply Operation
- Low Power Consumption . . . 85 mW Typ
- Analog Input Bandwidth . . . ≥75 MHz Typ
- Internal Reference Voltage Generators

applications

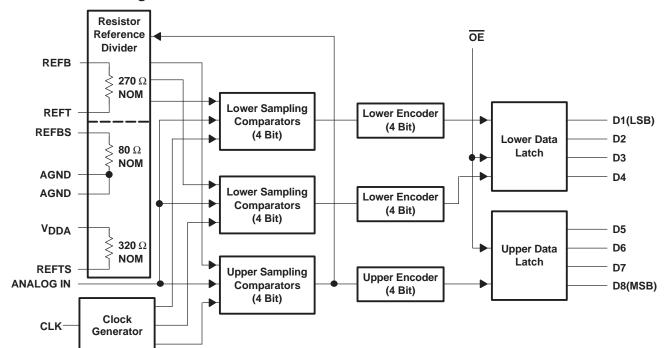
- Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK) Demodulators
- Digital Television
- Charge-Coupled Device (CCD) Scanners
- Video Conferencing
- Digital Set-Top Box
- Digital Down Converters
- High-Speed Digital Signal Processor Front End

description

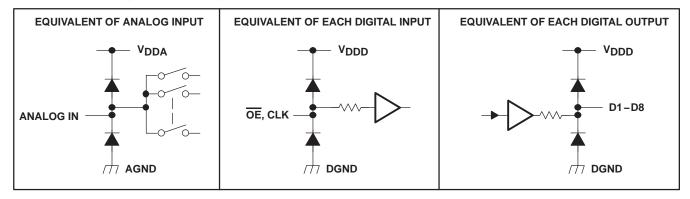
The TLC5540 is a high-speed, 8-bit analog-to-digital converter (ADC) that converts at sampling rates up to 40 megasamples per second (MSPS). Using a semiflash architecture and CMOS process, the TLC5540 is able to convert at high speeds while still maintaining low power consumption and cost. The analog input bandwidth of 75 MHz (typ) makes this device an excellent choice for undersampling applications. Internal resistors are provided to generate 2-V full-scale reference voltages from a 5-V supply, thereby reducing external components. The digital outputs can be placed in a high impedance mode. The TLC5540 requires only a single 5-V supply for operation.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

		nd di P VI		
				r I
OE [1	U	24] DGND
DGND [2		23] REFB
D1(LSB)	3		22] REFBS
D2 [4		21] AGND
D3 [5		20] AGND
D4 [6		19	ANALOG IN
D5 [7		18] V _{DDA}
D6 [8		17] REFT
D7 [9		16] REFTS
D8(MSB)	10		15	V _{DDA}
V _{DDD} [11		14] V _{DDA}
CLK [12		13	VDDD


DW OD NS DACKACE

AVAILABLE OPTIONS


_	PACK	AGE
TA	TSSOP (PW)	SOP (NS)
−0°C to 70°C	TLC5540CPW	TLC5540CNSLE
-40°C to 85°C	TLC5540IPW	TLC5540INSLE

SLAS105D - JANUARY 1995 - REVISED APRIL 2004

functional block diagram

schematics of inputs and outputs

Terminal Functions

TERM	INAL		
NAME	NO.	1/0	DESCRIPTION
AGND	20, 21		Analog ground
ANALOG IN	19	Ι	Analog input
CLK	12	I	Clock input
DGND	2, 24		Digital ground
D1-D8	3-10	0	Digital data out. D1:LSB, D8:MSB
OE	1	I	Output enable. When $\overline{OE} = L$, data is enabled. When $\overline{OE} = H$, D1–D8 is high impedance.
V _{DDA}	14, 15, 18		Analog V _{DD}
V _{DDD}	11, 13		Digital V _{DD}
REFB	23	I	ADC reference voltage in (bottom)
REFBS	22		Reference voltage (bottom). When using the internal voltage divider to generate a nominal 2-V reference, the REFBS terminal is shorted to the REFB terminal and the REFTS terminal is shorted to the REFT terminal (see Figure 13 and Figure 14).
REFT	17	I	Reference voltage in (top)
REFTS	16		Reference voltage (top). When using the internal voltage divider to generate a nominal 2-V reference, the REFTS terminal is shorted to the REFT terminal and the REFBS terminal is shorted to the REFB terminal (see Figure 13 and Figure 14).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DDA} , V _{DDD}	
Reference voltage input range, VI(REFT), VI(REFB), VI(REFBS), VI(REFTS)	
Analog input voltage range, V _{I(ANLG)}	
Digital input voltage range, VI(DGTL)	DGND to V _{DDD}
Digital output voltage range, V _{O(DGTL)}	DGND to V _{DDD}
Operating free-air temperature range, T _A : TLC5540C	0°C to 70°C
TLC5540I	–40°C to 85°C
Storage temperature range, T _{stg}	–55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SLAS105D - JANUARY 1995 - REVISED APRIL 2004

recommended operating conditions

			MIN	NOM	MAX	UNIT
	V _{DDA} -AGND		4.75	5	5.25	
Supply voltage	V _{DDD} -AGND	V _{DDD} -AGND		5	5.25	V
	AGND-DGND		-100	0	100	mV
Reference input voltage (top), VI(REFT)		V _{I(REFB)} +1.8	V _{I(REFB)} +2	V _{DDA}	V
Reference input voltage (bottom), VI(RI	EFB)		0	0.6	VI(REFT)-1.8	V
Analog input voltage range, VI(ANLG)	see Note 1)		VI(REFB)		VI(REFT)	V
Full scale voltage, VI(REFT) - VI(REFE	3)		1.8		5	V
High-level input voltage, VIH			4			V
Low-level input voltage, VIL					1	V
Pulse duration, clock high, $t_{W(H)}$			12.5			ns
Pulse duration, clock low, tw(L)			12.5			ns
	TLC5540C	TLC5540C			70	°C
Operating free-air temperature, T_A	TLC5540I	TLC5540I			85	°C

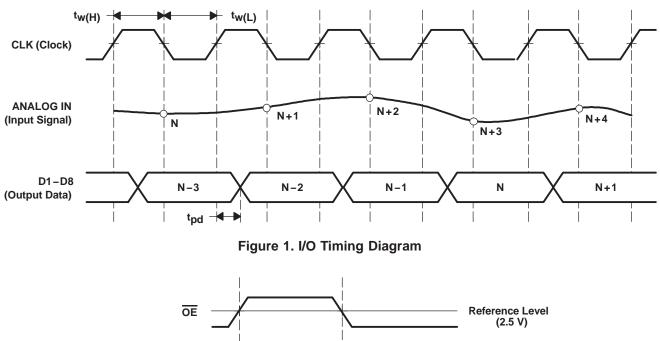
(1) $1.8 V \le V_{I(REFT)} - V_{I(REFB)} < V_{DD}$

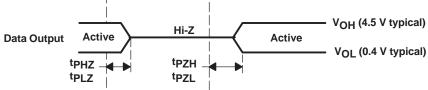
electrical characteristics at $V_{DD} = 5 \text{ V}$, $V_{I(REFT)} = 2.6 \text{ V}$, $V_{I(REFB)} = 0.6 \text{ V}$, $f_s = 40 \text{ MSPS}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS [†]	MIN	TYP	MAX	UNIT
-	I to contract the second		$T_A = 25^{\circ}C$		±0.6	±1	
EL	Linearity error, integral	f _S = 40 MSPS,	$T_A = MIN$ to MAX			±1	
-		$V_{I} = 0.6 \text{ V to } 2.6 \text{ V}$	$T_A = 25^{\circ}C$		±0.3	±0.75	LSB
ED	Linearity error, differential		$T_A = MIN$ to MAX			±1	
	Self bias (1), V _{RB}	Short REFB to REFBS		0.57	0.61	0.65	
	Self bias (1), V _{RT}	Short REFT to REFTS	See Figure 13	2.47	2.63	2.80	.,
	Self bias (2), V _{RB}	Short REFB to AGND			AGND		V
	Self bias (2), V _{RT}	Short REFT to REFTS	See Figure 14	2.18	2.29	2.4	
I _{ref}	Reference-voltage current	VI(REFT) - VI(REFB) =	2 V	5.2	7.5	12	mA
R _{ref}	Reference-voltage resistor	Between REFT and REF	Between REFT and REFB terminals				Ω
Ci	Analog input capacitance	V _{I(ANLG)} = 1.5 V + 0.07		4		pF	
E _{ZS}	Zero-scale error		2.14	-18	-43	-68	
E _{FS}	Full-scale error	$V_{I(REFT)} - V_{I(REFB)} =$	2 V	-25	0	25	mV
Iн	High-level input current	V _{DD} = 5.25 V,	$V_{IH} = V_{DD}$			5	
۱ _{IL}	Low-level input current	V _{DD} = 5.25 V,	$V_{IL} = 0$			5	μA
IOH	High-level output current	OE = GND,	$V_{DD} = 4.75 \text{ V}, V_{OH} = V_{DD} - 0.5 \text{ V}$	-1.5			
IOL	Low-level output current	OE = GND,	$V_{DD} = 4.75 \text{ V}, V_{OL} = 0.4 \text{ V}$	2.5			mA
IOZH(lkg)	High-level high-impedance-state output leakage current	$\overline{OE} = V_{DD}$,	V _{DD} = 5.25, V _{OH} = V _{DD}			16	
IOZL(lkg)	Low-level high-impedance-state output leakage current	$\overline{OE} = V_{DD},$	V _{DD} = 4.75, V _{OL} = 0			16	μA
IDD	Supply current	$f_{S} = 40 \text{ MSPS}, C_{L} \le 25 \text{ p}$ NTSC [‡] ramp wave inpu			17	27	mA

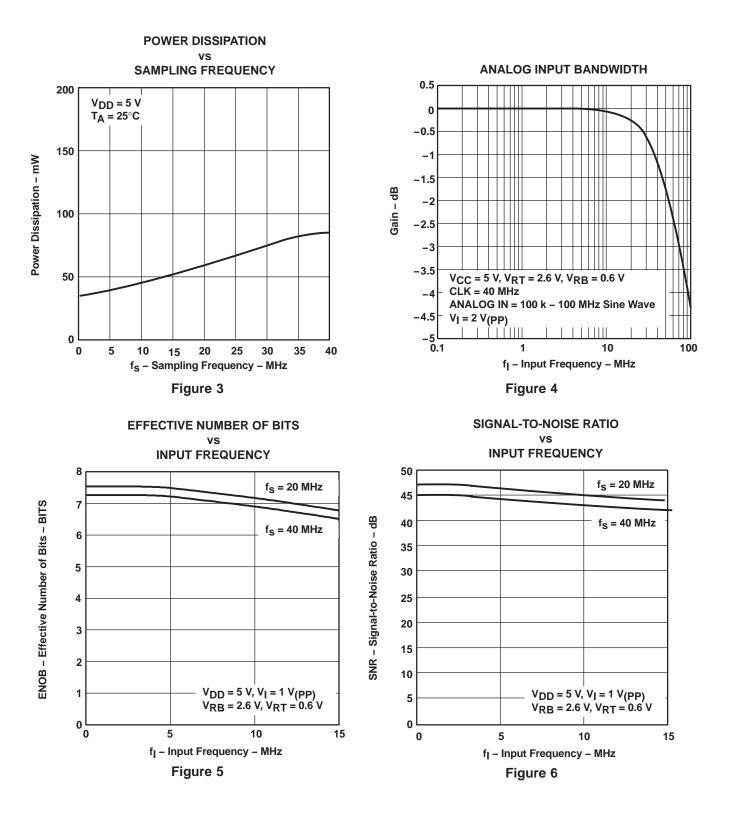
[†]Conditions marked MIN or MAX are as stated in recommended * National Television System Committee
 Supply current specification does not include I_{ref}.

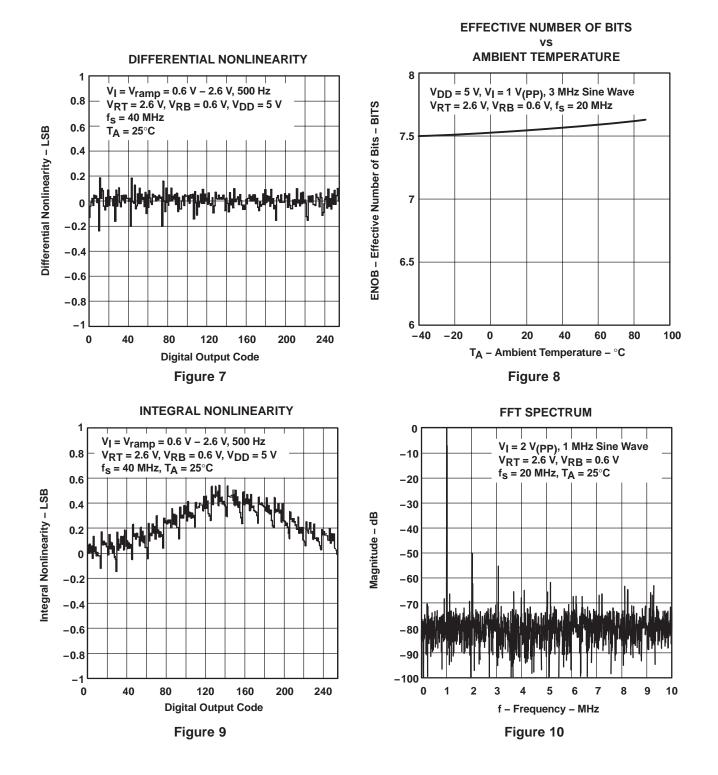
operating characteristics at V_{DD} = 5 V, V_{RT} = 2.6 V, V_{RB} = 0.6 V, f_s = 40 MSPS, T_A = 25°C (unless otherwise noted)


	PARAMETER	TEST C	CONDITIONS [†]	MIN	TYP	MAX	UNIT	
f _s	Maximum conversion rate	$T_A = MIN \text{ to } MA$	$T_A = MIN \text{ to MAX}$				MSPS	
f _S	Minimum conversion rate	$T_A = MIN \text{ to } MA$	ΑX		5		MSPS	
BW	Analog input full-power bandwidth	At – 3 dB,	VI(ANLG) = 2 V _{pp}		75		MHz	
tpd	Delay time, digital output	$C_L \le 10 \text{ pF}$ (see			9	15	ns	
t _{PHZ}	Disable time, output high to Hi-Z	C _L ≤ 15 pF,	$I_{OH} = -4.5 \text{ mA}$			20	ns	
^t PLZ	Disable time, output low to Hi-Z	C _L ≤ 15 pF,	I _{OL} = 5 mA			20	ns	
^t PZH	Enable time, Hi-Z to output high	C _L ≤ 15 pF,	$I_{OH} = -4.5 \text{ mA}$			15	ns	
tPZL	Enable time, Hi-Z to output low	C _L ≤ 15 pF,	IOL = 5 mA			15	ns	
	Differential gain	NTSC 40 IRE [‡]	modulation wave,		1%			
	Differential phase	f _S = 14.3 MSPS			0.7		degrees	
t _{AJ}	Aperture jitter time				30		ps	
^t d(s)	Sampling delay time				4		ns	
			f _l = 1 MHz		47			
			fl = 3 MHz	44	47		dB	
SNR		f _S = 20 MSPS	fl = 6 MHz		46			
	Signal-to-noise ratio		f _l = 10 MHz		45			
	-		fl = 3 MHz		45.2			
		f _S = 40 MSPS	fl = 6 MHz	42	44			
			f _l = 10 MHz		42			
			fl = 1 MHz		7.64			
		(fl = 3 MHz		7.61		1	
	F7 (1)	f _S = 20 MSPS	f _l = 6 MHz		7.47			
ENOB	Effective number of bits		f _l = 10 MHz		7.16		Bits	
		(fl = 3 MHz		7		1	
		f _S = 40 MSPS	fl = 6 MHz		6.8		1	
			f _l = 1 MHz		43			
		6 00 MODO	fl = 3 MHz	35	42			
	Total homeonic distortion	f _S = 20 MSPS	fl = 6 MHz		41		JD.	
THD	Total harmonic distortion		fl = 10 MHz		38		dBc	
		f _ 40 MODO	fl = 3 MHz		40			
		f _S = 40 MSPS	fl = 6 MHz		38			
	Spurious-free dynamic range	$f_S = 20 MSPS$	fi – 3 MHz	41	46		dBc	
	Spurious-free dynamic range	f _S = 40 MSPS	f _l = 3 MHz		42		UDC	


[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.
 [‡] Institute of Radio Engineers
 (2) C_L includes probe and jig capacitance.

SLAS105D - JANUARY 1995 - REVISED APRIL 2004





TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

grounding and power supply considerations

A signal ground is a low-impedance path for current to return to the source. Inside the TLC5540 A/D converter, the analog ground and digital ground are connected to each other through the substrate, which has a very small resistance (~30 Ω) to prevent internal latch-up. For this reason, it is strongly recommended that a printed circuit board (PCB) of at least 4 layers be used with the TLC5540 and the converter DGND and AGND pins be connected directly to the analog ground plane to avoid a ground loop. Figure 11 shows the recommended decoupling and grounding scheme for laying out a multilayer PC board with the TLC5540. This scheme ensures that the impedance connection between AGND and DGND is minimized so that their potential difference is negligible and noise source caused by digital switching current is eliminated.

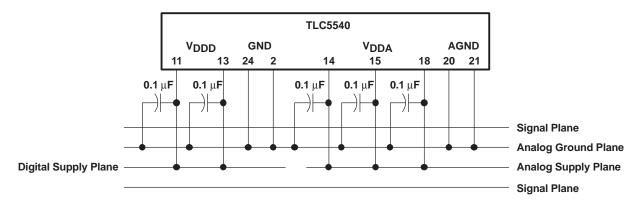


Figure 11. AV_{DD}, DV_{DD}, AGND, and DGND Connections

printed circuit board (PCB) layout considerations

When designing a circuit that includes high-speed digital and precision analog signals such as a high speed ADC, PCB layout is a key component to achieving the desired performance. The following recommendations should be considered during the prototyping and PCB design phase:

- Separate analog and digital circuitry physically to help eliminate capacitive coupling and crosstalk. When separate analog and digital ground planes are used, the digital ground and power planes should be several layers from the analog signals and power plane to avoid capacitive coupling.
- Full ground planes should be used. Do not use individual etches to return analog and digital currents or partial ground planes. For prototyping, breadboards should be constructed with copper clad boards to maximize ground plane.
- The conversion clock, CLK, should be terminated properly to reduce overshoot and ringing. Any jitter on the conversion clock degrades ADC performance. A high-speed CMOS buffer such as a 74ACT04 or 74AC04 positioned close to the CLK terminal can improve performance.
- Minimize all etch runs as much as possible by placing components very close together. It also proves beneficial to place the ADC in a corner of the PCB nearest to the I/O connector analog terminals.
- It is recommended to place the digital output data latch (if used) as close to the TLC5540 as possible to minimize capacitive loading. If D0 through D7 must drive large capacitive loads, internal ADC noise may be experienced.

PRINCIPLES OF OPERATION

functional description

The TLC5540 uses a modified semiflash architecture as shown in the functional block diagram. The four most significant bits (MSBs) of every output conversion result are produced by the upper comparator block CB1. The four least significant bits (LSBs) of each alternate output conversion result are produced by the lower comparator blocks CB-A and CB-B in turn (see Figure 12).

The reference voltage that is applied to the lower comparator resistor string is one sixteenth of the amplitude of the reference applied to the upper comparator resistor string. The sampling comparators of the lower comparator block require more time to sample the lower voltages of the reference and residual input voltage. By applying the residual input voltage to alternate lower comparator blocks, each comparator block has twice as much time to sample and convert as would be the case if only one lower comparator block were used.

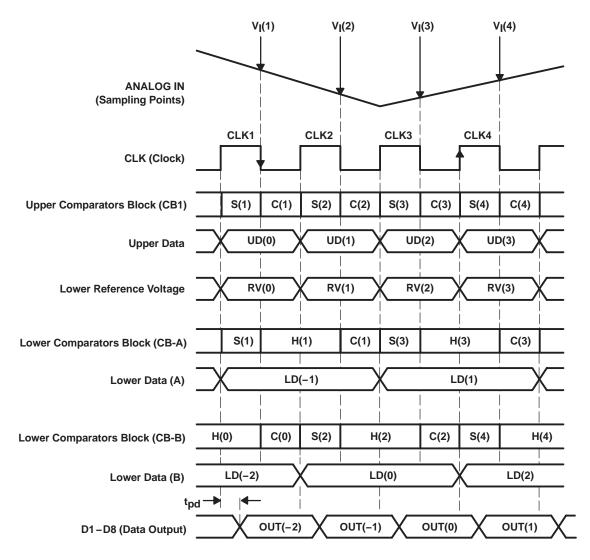


Figure 12. Internal Functional Timing Diagram

This conversion scheme, which reduces the required sampling comparators by 30 percent compared to standard semiflash architectures, achieves significantly higher sample rates than the conventional semiflash conversion method.

PRINCIPLES OF OPERATION

functional description (continued)

The MSB comparator block converts on the falling edge of each applied clock cycle. The LSB comparator blocks CB-A and CB-B convert on the falling edges of the first and second following clock cycles, respectively. The timing diagram of the conversion algorithm is shown in Figure 12.

analog input operation

The analog input stage to the TLC5540 is a chopper-stabilized comparator and is equivalently shown below:

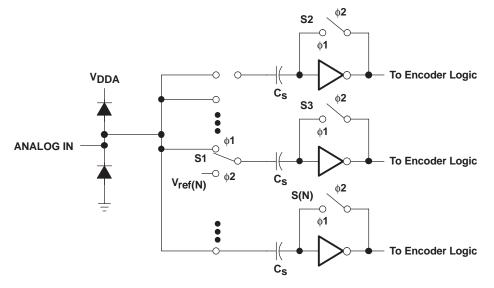


Figure 13. External Connections for Using the Internal Reference Resistor Divider

Figure 13 depicts the analog input for the TLC5540. The switches shown are controlled by two internal clocks, $\phi 1$ and $\phi 2$. These are nonoverlapping clocks that are generated from the CLK input. During the sampling period, $\phi 1$, S1 is closed and the input signal is applied to one side of the sampling capacitor, C_S. Also during the sampling period, S2 through S(N) are closed. This sets the comparator input to approximately 2.5 V. The delta voltage is developed across C_S. During the comparison phase, $\phi 2$, S1 is switched to the appropriate reference voltage for the bit value N. S2 is opened and V_{ref(N)} – VC_S toggles the comparator output to the appropriate digital 1 or 0. The small resistance values for the switch, S1, and small value of the sampling capacitor combine to produce the wide analog input bandwidth of the TLC5540. The source impedance driving the analog input of the TLC5540 should be less than 100 Ω across the range of input frequency spectrum.

reference inputs - REFB, REFT, REFBS, REFTS

The range of analog inputs that can be converted are determined by REFB and REFT, REFT being the maximum reference voltage and REFB being the minimum reference voltage. The TLC5540 is tested with REFT = 2.6 V and REFB = 0.6 V producing a 2-V full-scale range. The TLC5540 can operate with REFT – REFB = 5 V, but the power dissipation in the reference resistor increases significantly (93 mW nominally). It is recommended that a 0.1 μ F capacitor be attached to REFB and REFT whether using externally or internally generated voltages.

PRINCIPLES OF OPERATION

internal reference voltage conversion

Three internal resistors allow the device to generate an internal reference voltage. These resistors are brought out on terminals V_{DDA}, REFTS, REFT, REFB, REFBS, and AGND. Two different bias voltages are possible without the use of external resistors.

Internal resistors are provided to develop REFT = 2.6 V and REFB = 0.6 V (bias option one) with only two external connections. This is developed with a 3-resistor network connected to V_{DDA}. When using this feature, connect REFT to REFTS and connect REFB to REFBS. For applications where the variance associated with V_{DDA} is acceptable, this internal voltage reference saves space and cost (see Figure 14).

A second internal bias option (bias two option) is shown in Figure 15. Using this scheme REFB = AGND and REFT = 2.28 V nominal. These bias voltage options can be used to provide the values listed in the following table.

		BIAS VO	DLTAGE
BIAS OPTION	V _{RB}	V _{RT}	V _{RT} – V _{RB}
1	0.61	2.63	2.02
2	AGND	2.28	2.28

Table 1. Bias Voltage Options

To use the internally-generated reference voltage, terminal connections should be made as shown in Figure 14 or Figure 15. The connections in Figure 14 provide the standard video 2-V reference.

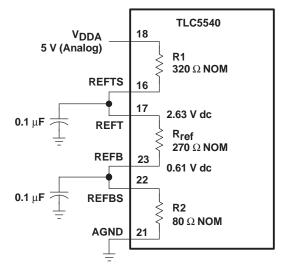
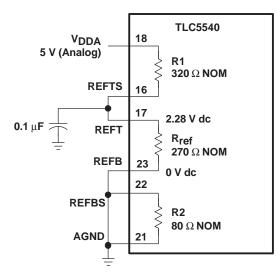



Figure 14. External Connections Using the Internal Bias One Option

SLAS105D - JANUARY 1995 - REVISED APRIL 2004

PRINCIPLES OF OPERATION

functional operation

Table 2 shows the TLC5540 functions.

INPUT SIGNAL			DIGITAL OUTPUT CODE							
VOLTAGE	STEP	MSB							LSB	
V _{ref(T)}	255	1	1	1	1	1	1	1	1	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	128	1	0	0	0	0	0	0	0	
•	127	0	1	1	1	1	1	1	1	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
V _{ref(B)}	0	0	0	0	0	0	0	0	0	

Table 2. Functional Operation

www.ti.com

30-Jul-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLC5540CNSLE	OBSOLETE	SO	NS	24		TBD	Call TI	Call TI	
TLC5540CNSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLC5540CNSRG4	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLC5540CPW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TLC5540CPWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TLC5540INSLE	OBSOLETE	SO	NS	24		TBD	Call TI	Call TI	
TLC5540INSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLC5540INSRG4	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLC5540IPW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TLC5540IPWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TLC5540IPWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TLC5540IPWRG4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

www.ti.com

30-Jul-2011

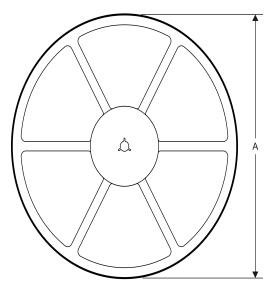
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

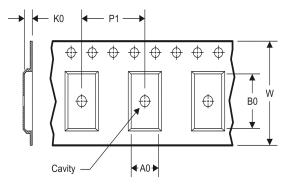
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

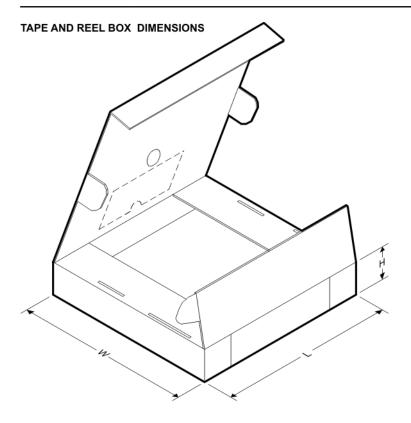
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

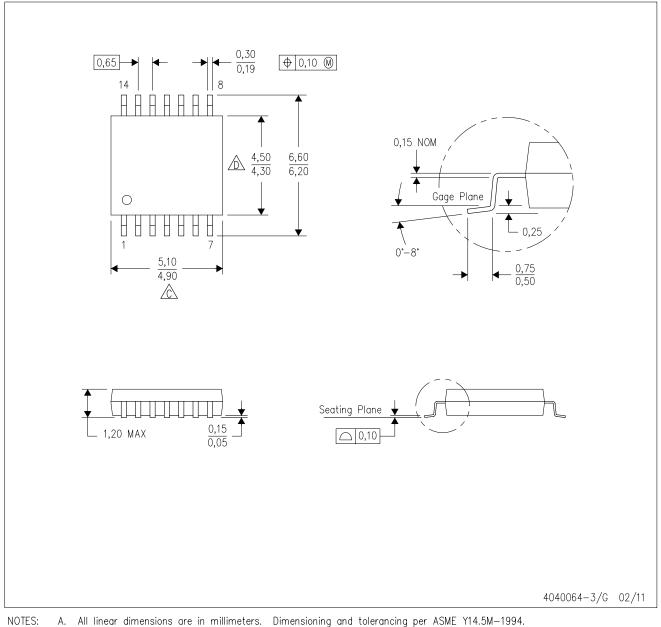

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC5540CNSR	SO	NS	24	2000	330.0	24.4	8.2	15.4	2.5	12.0	24.0	Q1
TLC5540INSR	SO	NS	24	2000	330.0	24.4	8.2	15.4	2.5	12.0	24.0	Q1
TLC5540IPWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

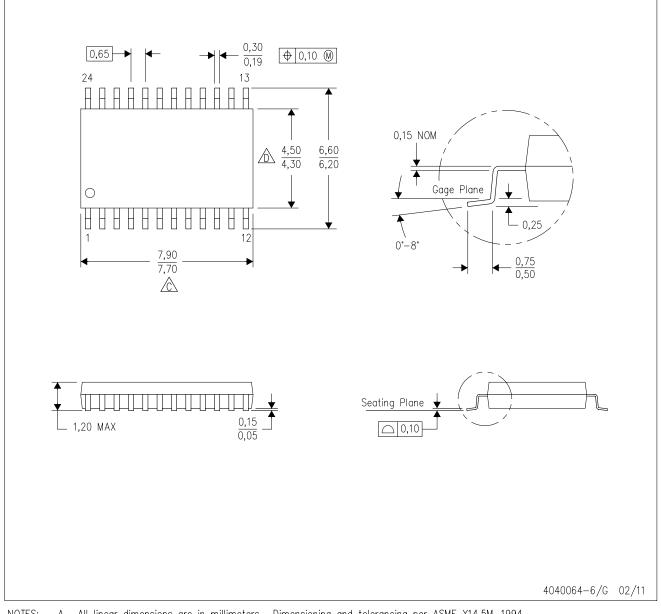
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC5540CNSR	SO	NS	24	2000	367.0	367.0	45.0
TLC5540INSR	SO	NS	24	2000	367.0	367.0	45.0
TLC5540IPWR	TSSOP	PW	24	2000	367.0	367.0	38.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

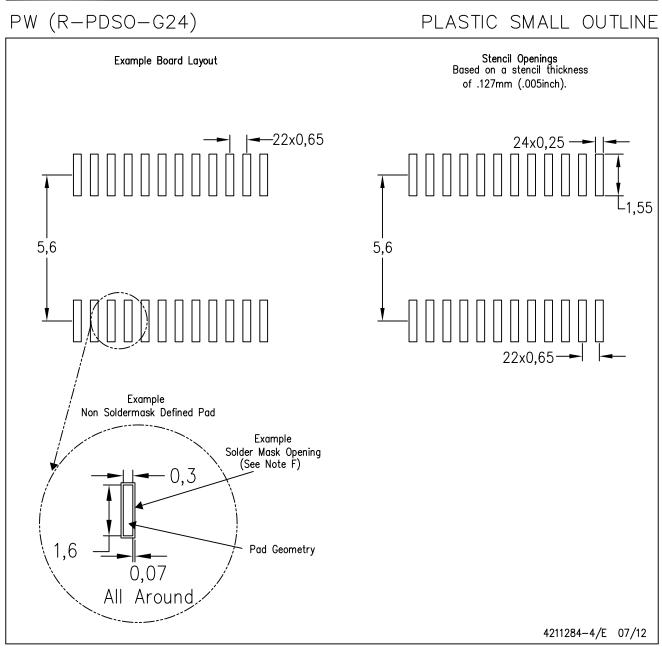
E. Falls within JEDEC MO-153

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated