

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	800			
R _{DS(on)} (Ω)	V _{GS} = 10 V 3.0			
Q _g (Max.) (nC)	78			
Q _{gs} (nC)	9.6			
Q _{gd} (nC)	45			
Configuration	Single			

FEATURES

- Dynamic dV/dt Rated
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- · Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third Generation Power MOSFETs from Vishay provide the designer with best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	IRFPE30PbF
	SiHFPE30-E3
SnPb	IRFPE30
	SiHFPE30

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	800	V
Gate-Source Voltage			V _{GS}	± 20	v
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C		4.1	
	VGS at 10 V	$T_C = 100 \ ^\circ C$	I _D	2.6	А
Pulsed Drain Current ^a			I _{DM}	16	
Linear Derating Factor				1.0	W/°C
Single Pulse Avalanche Energy ^b			E _{AS}	170	mJ
Repetitive Avalanche Current ^a			I _{AR}	4.1	А
Repetitive Avalanche Energy ^a			E _{AR}	13	mJ
Maximum Power Dissipation $T_{C} = 25 \text{ °C}$			PD	125	W
Peak Diode Recovery dV/dt ^c			dV/dt	2.0	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C
Soldering Recommendations (Peak Temperature) for 10 s				300 ^d	U
Mounting Torque	6 32 or 1	6-32 or M3 screw		10	lbf ∙ in
mounting forque	0-32 01 1			1.1	N · m

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \text{ °C}$, L = 18 mH, $R_g = 25 \Omega$, $I_{AS} = 4.1 \text{ A}$ (see fig. 12).

c. $I_{SD} \le 4.1$ A, dl/dt ≤ 100 A/µs, $V_{DD} \le 600$, $T_J \le 150$ °C.

d. 1.6 mm from case.

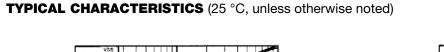
* Pb containing terminations are not RoHS compliant, exemptions may apply

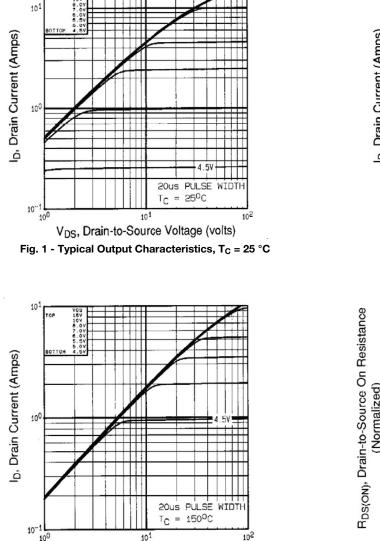
Document Number: 91246 S11-0442-Rev. B, 14-Mar-11 www.vishay.com

Vishay Siliconix

THERMAL RESISTANCE RATI	NGS							
PARAMETER	SYMBOL	TYP. MAX.				UNIT		
Maximum Junction-to-Ambient	R _{thJA}	- 40						
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24		-		°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-		1.0		-		
SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$, $T_J = 25 \ ^{\circ}C$	unless otherw	vise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static								
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$	V, I _D = 250 μA		800	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference t	o 25 °C, I _D = 1	mA	-	0.90	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V$	_{GS} , I _D = 250 μΑ		2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}	VG	_S = ± 20 V		-	-	± 100	nA
		V _{DS} = 800 V, V _{GS} = 0 V 100		100				
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 640 V, V	$V_{\rm GS} = 0 \text{ V}, \text{ T}_{\rm J} = 10 \text{ V}$	125 °C	-	-	500	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V I _D = 2.5 A ^b		-	-	3.0	Ω	
Forward Transconductance	9 _{fs}	$V_{DS} = 5$	0 V, I _D = 2.5 A ^b		2.4	-	-	S
Dynamic		-						
Input Capacitance	C _{iss}	V _{GS} = 0 V,		-	1300	-		
Output Capacitance	C _{oss}	V	_{os} = 25 V,		-	310	-	pF
Reverse Transfer Capacitance	C _{rss}	V _{DS} = 25 V, - 310 f = 1.0 MHz, see fig. 5 - 190		-	1			
Total Gate Charge	Qg				-	-	78	
Gate-Source Charge	Q _{gs}			-	9.6	nC		
Gate-Drain Charge	Q _{gd}	1	See lig. 0 a		-	-	45	1
Turn-On Delay Time	t _{d(on)}				-	12	-	
Rise Time	t _r	- 	0 V, I _D = 4.1 A		-	33	-	
Turn-Off Delay Time	t _{d(off)}		$0 = 95 \Omega$, see fig		-	82	-	ns
Fall Time	t _f				-	30	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") fro	m /		-	5.0	-	
Internal Source Inductance	L _S	package and ce die contact	nter of 🥵	s s	-	13	-	nH
Drain-Source Body Diode Characteristic	s							•
Continuous Source-Drain Diode Current	١ _S	MOSFET symbol showing the		-	-	4.1	A	
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction die		s and the second	-	-	16	~
Body Diode Voltage	V_{SD}	T _J = 25 °C, I ₅	_s = 4.1 A, V _{GS} =	= 0 V ^b	-	-	1.8	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 4	1 1 A dl/dt – 1	00 A/usb	-	480	720	ns
Body Diode Reverse Recovery Charge	Q _{rr}	·J = 20 0, if = .	, a/at = 1	ου / ν μο	-	1.8	2.7	μC
Forward Turn-On Time	t _{on}	Intrinsic turn	on time is neg	ligible (turn	-on is dor	minated b	y L _S and	L _D)

Notes


a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).


b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

www.vishay.com 2 Document Number: 91246 S11-0442-Rev. B, 14-Mar-11

Vishay Siliconix

V_{DS}, Drain-to-Source Voltage (volts)

Fig. 2 - Typical Output Characteristics, T_C = 150 $^\circ C$

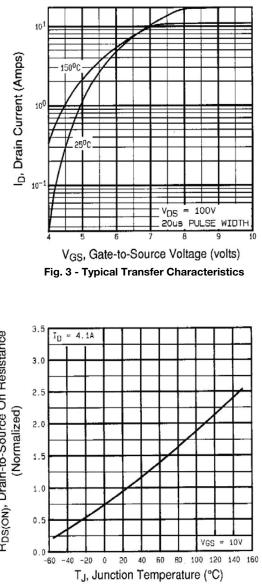


Fig. 4 - Normalized On-Resistance vs. Temperature

www.vishay.com

Vishay Siliconix

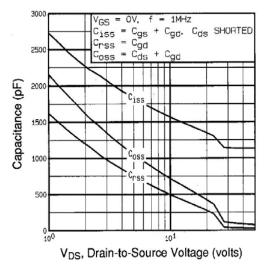


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

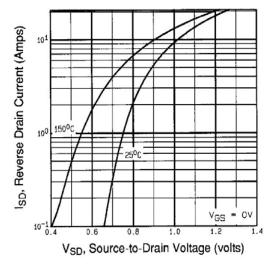


Fig. 7 - Typical Source-Drain Diode Forward Voltage

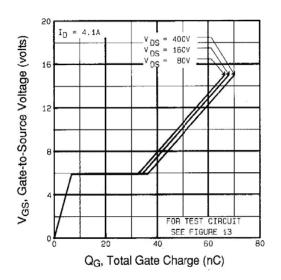


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

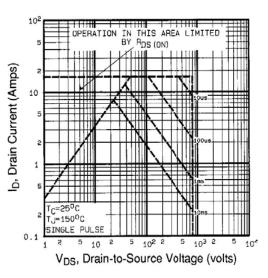


Fig. 8 - Maximum Safe Operating Area

Document Number: 91246 S11-0442-Rev. B, 14-Mar-11

Vishay Siliconix

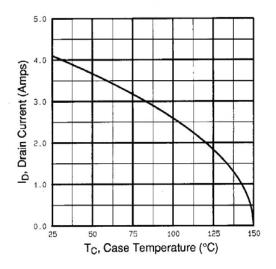


Fig. 9 - Maximum Drain Current vs. Case Temperature

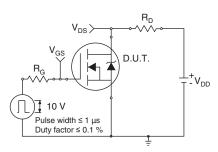


Fig. 10a - Switching Time Test Circuit

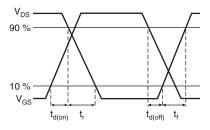


Fig. 10b - Switching Time Waveforms

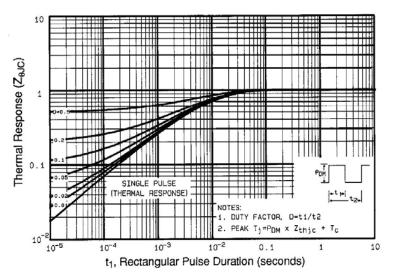


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

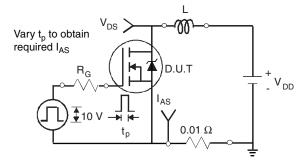


Fig. 12a - Unclamped Inductive Test Circuit

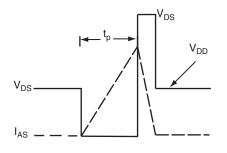


Fig. 12b - Unclamped Inductive Waveforms

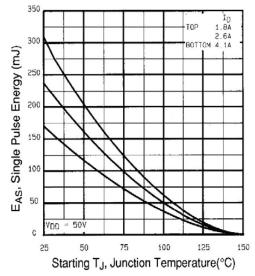
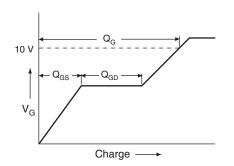
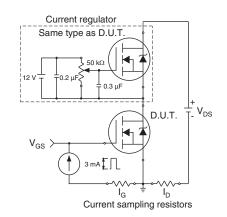
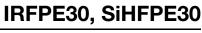
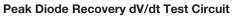
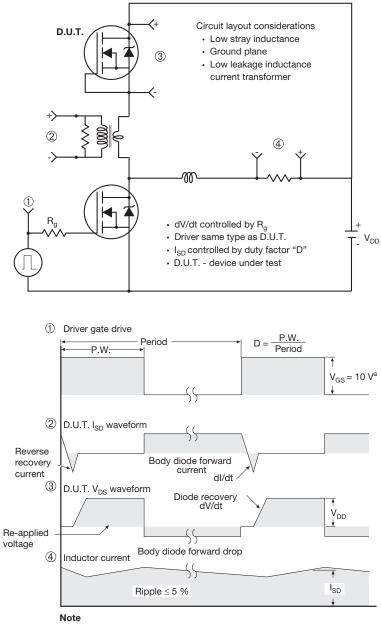



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

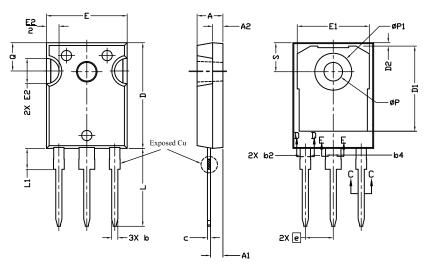





Fig. 13b - Gate Charge Test Circuit

www.vishay.com 6 Document Number: 91246 S11-0442-Rev. B, 14-Mar-11

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91246.

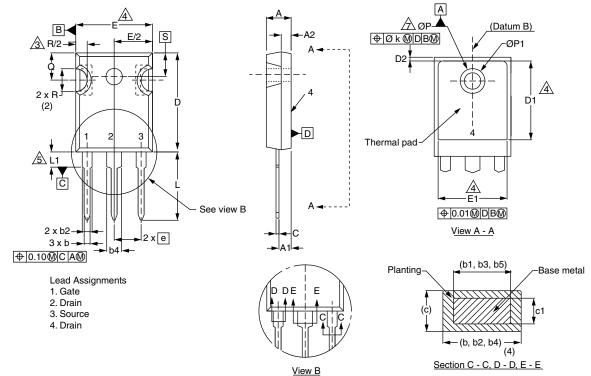
Document Number: 91246 S11-0442-Rev. B, 14-Mar-11 www.vishay.com

TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

Section C--C, D--D, E--E

	MILLIN		
DIM.	MIN.	MAX.	NOTES
А	4.83	5.21	
A1	2.29	2.55	
A2	1.50	2.49	
b	1.12	1.33	
b1	1.12	1.28	
b2	1.91	2.39	6
b3	1.91	2.34	
b4	2.87	3.22	6, 8
b5	2.87	3.18	
С	0.55	0.69	6
c1	0.55	0.65	
D	20.40	20.70	4


	MILLIN	IETERS		
DIM.	MIN.	MAX.	NOTES	
D1	16.25	16.85	5	
D2	0.56	0.76		
E	15.50	15.87	4	
E1	13.46	14.16	5	
E2	4.52	5.49	3	
е	5.44	5.44 BSC		
L	14.90	15.40		
L1	3.96	4.16	6	
ØP	3.56	3.65	7	
Ø P1	7.19	7.19 ref.		
Q	5.31	5.69		
S	5.54	5.74		

Notes

- ⁽¹⁾ Package reference: JEDEC[®] TO247, variation AC
- (2) All dimensions are in mm
- ⁽³⁾ Slot required, notch may be rounded
- ⁽⁴⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁵⁾ Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

VERSION 2: FACILITY CODE = Y

	MILLIMETERS				MILLIMETERS		
DIM.	MIN.	MAX.	NOTES	DIM.	MIN.	MAX.	NOTE
А	4.58	5.31		D2	0.51	1.30	
A1	2.21	2.59		E	15.29	15.87	
A2	1.17	2.49		E1	13.72	-	
b	0.99	1.40		е	5.46	BSC	
b1	0.99	1.35		Øk	0.	254	
b2	1.53	2.39		L	14.20	16.25	
b3	1.65	2.37		L1	3.71	4.29	
b4	2.42	3.43		ØР	3.51	3.66	
b5	2.59	3.38		Ø P1	-	7.39	
С	0.38	0.86		Q	5.31	5.69	
c1	0.38	0.76		R	4.52	5.49	
D	19.71	20.82		S	5.51	BSC	
D1	13.08	-					

Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.